Adrenal Steroids Mineralocorticoids & Glucocorticoids

Munir Gharaibeh, MD, PhD, MHPE
School of Medicine
The Jordan University
Summer 2017

Adrenal Gland Cortex

Left adrenal gland

Cut-section of adrenal gland

Right adrenal gland

Right adrenal gland

Left adrenal gland

Left kidney

Cortex

Medulla

Mineralocorticoids (Aldosterone)

Control of synthesis and release:

- ↑ Angiotensin III.
- ↑ Angiotensin II
- \uparrow K⁺ (the most sensitive stimulator of aldosterone)
- ACTH
- ↓ ECF or blood volume.
- Metabolic acidosis

General Adrenal Anatomy and Biochemistry

Synthesis of Steroids

DE= debranching enzyme; side chain cleavage enzyme; desmolase

Deh.= 3β-hydroxysteroid dehydrogenase enzyme Hyd's= Hydroxylases

Renin-angiotensin-aldosterone axis

Angiotensinogen
Renin
Angiotensin I
ACE
Angiotensin II
Aldosterone

Factors/drugs † renin-angiotesin-aldosterone

- Volume depletion (hemorrhage, low Na⁺ intake, dehydration, overuse of diuretics...)
- Upright posture
- K⁺
- ACTH
- Vasodilators
- Beta Adrenoreceptor agonists

Factors/drugs | renin-angiotesin-aldosterone:

- Blood volume expansion.
- Beta Adrenoreceptor antagonists
- Renin release inhibitors, also known as renin antagonists e.g.: Aliskiren, Remikerin, Enalkiren, β₁-blockers
- ACE inhibitors e.g. Captopril, Enalapril, Benazapril
- ARB's (Angiotensin II receptor blockers), e.g. Candesartan, Losartan, Irbesartan, Telmesartan.
- Aldosterone antagonists, e.g. Spironolactone, Eplerenone

Effects of Aldosterone

Receptor-mediated

Acts on distal convoluted tubules in the kidney

- \uparrow reabsorption of Na⁺ \rightarrow hypertension
- ↑ excretion of K⁺ & H⁺ → hypokalemia & metabolic alkalosis
- ↑ EC volume
- ↑ **BP**

Glucocorticoids (Cortisol)

Feedback control

Glucocorticoids (Cortisol)

Secretion follows a circadian rhythm

Treatment with cortisol should mimic this rhythm.

Cortisol synthesis starts from cholesterol.

Glucocorticoids (Cortisol)

DE= debranching enzyme; side chain cleavage enzyme; desmolase

Deh.= 3β-hydroxysteroid dehydrogenase enzyme Hyd's= Hydroxylases

Steroid synthesis inhibitors

- o,p'-DDD (Mitotane):

Causes selective atrophy of Zona Fasciculata and Zona Reticularis

Useful in adrenal CA when radiotherapy or surgery are not feasible and in certain cases of breast cancer

- Aminoglutethimide:

Selective desmolase inhibitor and non selective aromatase inhibitor, same uses as mitotane

Steroid synthesis inhibitors

- Trilostane:

Competitive inhibitor of 3\beta-hydroxysteroid dehydrogenase enzyme.

Effective in Cushing's syndrome and breast cancer.

- Ketoconazole:

Antifungal agent

Inhibitor of different hydroxylases.

Inhibits steroidogenesis in adrenals and testes.

Effective in Cushing's syndrome and CA of prostate.

Steroid synthesis inhibitors

- Amphenone B

An inhibitor of different hydroxylases but very toxic.

Toxicity: antithyroid effect, severe CNS depression, GIT upset and many skin disorders

- Metyrapone (Metopirone)

11 β-hydroxylase inhibitor.

Effective as a diagnostic tool (metyrapone Test) and in the management of Cushing's syndrome July 17

- On proteins:

↑ Catabolism ↓ anabolism

This might result in osteoporosis; myopathy; delayed wound healing; delayed peptic ulcer healing...

- On CHO:

Diabetogenic: gluconeogenesis; \(\pi\) peripheral utilization of glucose.

- On lipids:

↑ lipolysis

This results in characterstic body fat redistribution.

- On electrolytes:

Aldosterone-like effect, lesser potency.

- **↓** Ca⁺⁺ absorption from intestine
- ↑ Ca⁺⁺ excretion by kidney
- ↑ Uric acid excretion

- Antiinflammatory effect:

Other possible antiinflammatory mechanisms:

- Inhibition of neutrophil and macrophage function.
- Inhibition of platelet activation factor (PAF)
- Inhibition of tissue necrosis factor or receptor (TNF; TNR)
- Inhibition of nitric oxide reductase...

Effects of Glucocorticoids

Immunosuppressant effect:

- ↓ initial processing of antigens
- **↓** Antibody formation
- **↓** Effectiveness of T-lymphocytes
- ↓ Lymphocyte induction and proliferation.
- ↓ Lymphoid tissue including leukemic lymphocytes (antileukemic effect).

Effects of Glucocorticoids

Antiallergic effect:

Supress allergic response

- **↓** Histamine release
- **↓** Eosinophils

CNS effects:

Euphoria

Psychosis

Glucocorticoids

Glucocorticoids dosage forms:

Available in all dosage forms.

Available in many preparations.

- Structure activity relationship: Major objective: Good antiinflammatory effect, less or no aldosterone-like activity.
- Metabolism:

In the liver, by reduction and conjugation (90-95%); little hydroxylation reactions (5%)

Glucocorticoid Preparations

Short-acting	<u>Half-life</u>	<u>AIA</u>	Aldlike
Corisol	10	1	1
Cortisone	10	0.8	1
Corticosterone	10	0.3	30
Fludrocortisone	10	10	150

Glucocorticoid preparations

Intermediate-acting	<u>Half-life</u>	<u>AIA</u>	Aldlike
Prednisone	20	4	0.8
Prednisolone	20	5	0.8
Methylprednisolone	20	6	-/
Triamcinolone	20	6	_
Beclomethasone	20	6	-

Glucocorticoid preparations

Long-acting:	<u>Half-life</u>	<u>AIA</u>	Aldlike
Betamethasone	50	25	-
Dexamethasone	50	30	<u> _</u>

Clinical uses of Glucocorticoids

- Adrenal insufficiency: e.g. acute; chronic, Addisonian crisis, Addison's disease. Given in small physiological doses.

- Inflammatory conditions: e.g. rheumatoid arthritis, SLE, arteritis, dermatomyositis, cerebral edema, ulcerative colitis, rheumatic carditis, active chronic hepatitis, proctitis, acute gout.

- Allergic reactions: e. g. hay fever, eczema, dermatitis, bronchial asthma, status asthmaticus

Clinical uses of Glucocorticoids

- Immunosuppression: organ transplantation, hemolytic anemia, leukemias, many tumors.

- Hypercalcemia associated with Vit. D intoxication or sarcoidosis or hyperparathyroidism or cancer.

- Many eye, ear, and skin diseases (allergic or inflammatory)

Side effects of Glucocorticoids

Suppression of hypothalamic-pituitary-adrenal axis:

- Major and most dangerous side effect.
- If treatment extends more than two weeks:
 - Patient should be given supplementary therapy at times of stress.
 - Treatment should be tapered slowly.
- If dosage is reduced rapidly:
 - Symptoms of the disorder reappear or increase in intensity.
 - Withdrawal syndrome appears: anorexia, N, V, weight loss, lethargy, headache, fever, joint and muscle pain, and postural hypotension.

Side effects of Glucocorticoids

- Cushing's syndrome
- Salt & water retention, edema, hypokalemia, HT, obesity
- Peptic ulcer disease and GIT ulcerations
- Osteoporosis
- Diabetes mellitus
- Viral and fungal infections
- Delayed wound healing, skin atrophy, and myopathy
- Suppression of growth in children
 - Cataract...

CUSHING'S SYNDROME

Strategies in the use of Glucocorticoids

Use a short-acting steroid.

Use the minimal possible dose.

- 2/3rd of the dose in morning and 1/3rd in evening.

Use alternate day therapy which is associated with less suppression to growth of children, less suppression of the hypothalamic-pituitary-adrenal axis, and fewer side effects