AUTACOIDS

Munir Gharaibeh, MD, PhD, MHPE School of Medicine, The University of Jordan Summer, 2017 mgharaib@ju.edu.jo

AUTACOIDS

Endogenous substances with complex physiologic and pathphysiologic functions; commonly understood to include histamine, serotonin, prostaglandins, and vasoactive peptides.

Histamine

- Occurs in plants, animals, venoms, and stinging secretions.
- Formed from I-histidine.
- Mediator of immediate allergic, and inflammatory reactions.
- Plays only a modest role in anaphylaxis.
- Gastric acid secretion.
- Neurotransmission.

Histamine

Stored in granules in mast cells and basophils, and inactivated. Two types of release:

Immunologic Release:

IgE and antigen interaction causes explosive degranulation and release of histamine, ATP, and other mediators.

Chemical and Mechanical Release:

Drugs like morphine and tubocurarine.

Molecular Actions of Histamine G Protein Coupled Receptors:

- H 1, H2, H3, H4 types, no subfamilies.
- Activation of H1 receptors (in endothelium, smooth muscle cells, and nerve endings), elicits inositol triphosphate (IP3).
- Activation of H2 receptors(in gastric mucosa, cardiac muscle, and some immune cells), increases cAMP

TABLE 16-1 Histamine receptor subtypes.

Receptor Subtype	Distribution	Postreceptor Mechanism	Partially Selective Agonists	Partially Selective Antagonists or Inverse Agonists
H ₁	Smooth muscle, endothellum, brain	G _q ↑IP ₂ ,DAG	Histaprodifen	Mepyramine, ¹ triprolidine, cetirizine
H ₂	Gastric mucosa, cardiac muscle, mast cells, brain	G _p T cAMP	Amthamine	Cimetidine,1 ranitidine,1 tiotidine
H _I	Presynaptic autoreceptors and heteroreceptors: brain, myenteric plexus, other neurons	G, ↓cAMP	R-cs-Methythistamine, imetit, immepip	Thioperamide, lodophenpropit, clobenpropit, tiprolisant
H _E	Eosinophils, neutrophils, CD4T cells	G, ↓cAMP	Cloberpropit, imetit, clozapine	Thioperamide ¹

inverse agonist.

[:]AMF, cyclic adenosine monophosphate; DAG, diacylglycerol; \mathbb{P}_{Σ} inositol trisphosphate.

Pharmacologic Effects of Histamine

- Satiety effect
- Decrease BP and increase HR.
- Constricts bronchial muscle.
- Stimulates GI smooth muscle.
- Stimulates gastric acid secretion.
- Triple Response: intradermal injection causes red spot, edema, and flare response.
- Pain sensation.

Histamine Antagonists

- Physiologic Antagonists:
 - Epinehrine
- Release Inhibitors:
 - Cromolyn
 - Nedocromil
- Receptor Antagonists:
 - H1 antagonists
 - H2 antagonists

H1 Receptor Antagonists

- Reversible competitive binding to H1 receptors.
- Known long time ago, 60 years.
- Used in the treatment of allergy.
- Available without a prescription(OTC), alone, or in combination as 'cold preparations" and 'sleep aids"

H1 Receptor Antagonists

- First Generation:
 - Strong sedatives because they can cross BBB. Dangers???.
 - Examples: Diphenhydramine, Chlorpheneramine
 - Have autonomic(α &M blocking effects
- Second Generation:
 - Less lipid soluble, so no sedative activity.
 - Examples: Fexofenadine, Loratidine, Cetrizine

Pharmacodynamics of H1 Antagonists

- Sedation:
 - Very common with first generation agents.
 - Varies among agents and patients.
 - No abuse potential.
 - Cause stimulation and convulsions at high doses.
- Antinausea and antiemetic.
- Antiparkinsonism.
- Anticholinergic.
- Alpha blocking.
- Serotonin blocking.
- Local anesthesia

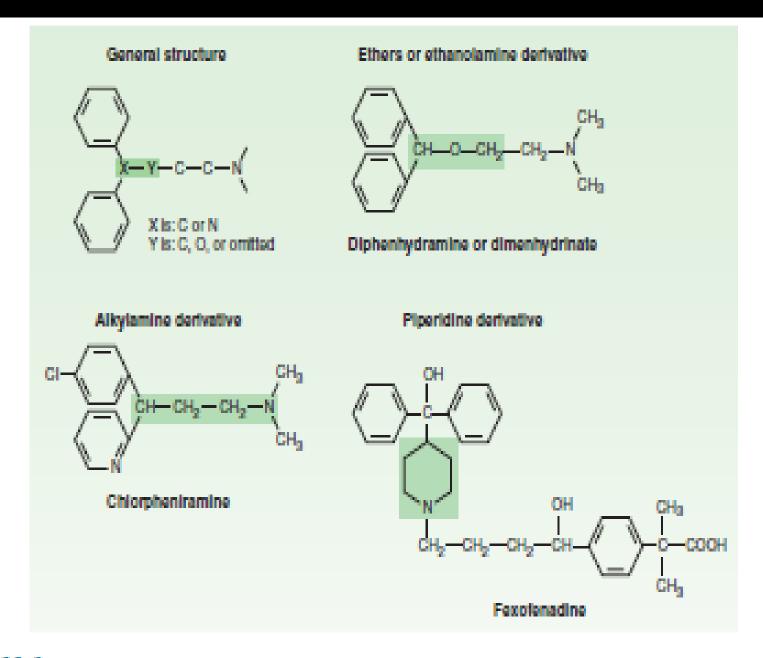


FIGURE 16—1 General structure of H₁-antagonist drugs and examples of the major subgroups. Chemical subgroups are indicated by shading.

Clinical uses of H1 Antagonists

- Allergic reactions:
- More effective when given before exposure.
- Sedative effect reduces awareness of itching.
- Local application may induce allergy by itself.
- Motion Sickness and Vestibular Disturbances: Menier's Syndrome.
- Nausea and vomiting of Pregnancy (*Morning Sickness*):
- Teratogenic in rodents.

H2 Antagonists

- Breakthrough treatment for peptic ulcer disease(1972).
- Do not completely abolish acid secretion(40-60%).
- Replaced by proton pump inhibitors(100% inhibition).
- Cimetidine.
- Ranitidine.
- Famotidine.
- Naziditine.

Serotonin and 5-Hydroxytryptamine

- Serotonin: a vsoconstrictor released from the blood clot.
- Enteramine: a smooth muscle stimulant found in intestinal mucosa.
- 5-Hydroxytryptamine(synthesized in 1951)

- (Banana) and animal tissues, venoms, and stings.
 - Synthesized from L-tryptophan.
 - Stored, or rapidly inactivated by MAO.
 - 90% is found in the enterochromaffin cells of the GIT.
 - Also found in platelets, enteric nervous system, nerve endings, and brain.
 - Involved in mood, sleep, appetite, temperature control, and pain perception.
 - Involved in depression, anxiety, migraine,

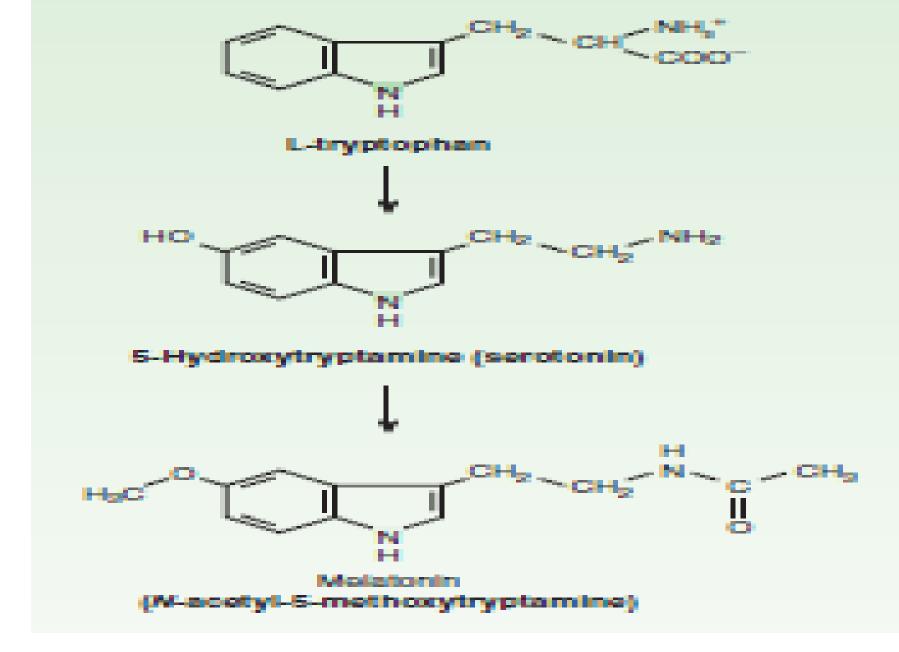


FIGURE 16–2 Synthesis of serotonin and melatonin from t-tryptophan.

TABLE 16-3 Serotonin receptor subtypes currently recognized. (See also Chapter 21.)

Receptor Subtype	Distribution	Postreceptor Mechanism	Partially Selective Agonists	Partially Selective Antagonists
S-HT _{TA}	Raphe nuclei, hippocampus	G _p ↓cAMP	8-OH-DPAT,1 repinotan	WAY1006351
S-HT ₁₈	Substantia nigra, globus pallidus, basal ganglia	G _L ↓ cAMP	Sumatriptan, L694247 ¹	
S-HT _{1D}	Brain	G _p ↓cAMP	Sumatriptan, eletriptan	
5-HT _{TE}	Cortex, putamen	G _i , ↓ cAMP		
S-HT _{TF}	Cortex, hippocampus	G _p ↓cAMP	LY3344864 ¹	
5-HT _{1P}	Enteric nervous system	G _a , slow EPSP	5-Hydroxyindalpine	Renzapride
5-HT _{2A}	Platelets, smooth muscle, cerebral cortex	$G_{q^{\prime}} \uparrow \mathbb{P}_3$	cs-Methyl-5-HT, DOI ¹	Ketanserin
5-HT ₂₈	Stomach fundus	G _p ↑P ₁	a-Methyl-5-HT, DOI1	RS127445 ¹
5-HT _{XC}	Chorold, hippocampus, substantia nigra	G _q ,↑P ₃	cs-Methyl-5-HT, DOI,1 lorcaserin	Mesulergine
5-HT ₂	Area postrema, sensory and enteric nerves	Receptor is a Na*/ K* ion channel	2-Methyl-5-HT, m-chlorophenylbiguanide	Granisetron, ondansetron, others
5-HT ₄	CNS and myenteric neurons, smooth muscle	G _s ,↑cAMP	BIMU8,1 renzapride, metoclopramide	GR113808 ¹
5-HTsan	Brain	↓ cAMP		

Clozapine (S-HT₂)

cAMF, cyclic adenosine monophosphate; EFSF, excitatory postsynaptic potential; IF₃, inositol trisphosphate.

G,, T cAMP

Research agents; for chemical names see Alexander SPH, Mathie A, Peters JA: Guide to receptors and channels (GRAC). Br J Pharmacol 2009;158 (Suppl 1):512.

5-HT₆₇

Brain

Pharmacologic Effects of Serotonin Nervous System:

- Melatonin
- Chemoreceptor Reflex(Bezold-Jarish Reflex): activation of 5-HT3 receptors in coronary arteries, leads to hypotension and bradycardia.

Respiratory System:

Bronchoconstriction and hyperventilation.

Cardiovascular System:

- Vasoconstriction.
- Vasodilation in skeletal muscles and coronary arteries.
 Intact endothelium is required
- Platelets aggregation.

Pharmacologic Effects of Serotonin GIT:

- Stimulation and diarrhea.
- Carcinoid Syndrome: due to a tumor of the enterochromaffin cells.

Skeletal Muscle:

- Serotonin Syndrome:
 - Due to excess serotnergic activity.
 - Potentially fatal.
 - Skeletal muscle contraction and hyperthermia
 - Predictable, not idiosyncratic.

Clinical Uses of Serotonin Agonists Serotonin:

Has no clinical application.

Buspirone:

5HT1A agonist, anxiolytic, nonsedating.

Triptans: e.g. Sumatryptan

- 5HT1D/1B agonists
- First line drugs for migraine headache.

Cisapride:

5HT4 agonist used only in gastroesophageal reflux.

Tagaserod:

5HT4 agonist

Fluoxetine:

SSRI, widely used in depression.

Serotonin Antagonists

Phenoxybenzamine:

An old alpha blocker, but also 5HT blocker.

Cyproheptadine:

- 5HT2 and H1 blocker.
- Useful in carcinoid and serotonin syndrome.

Ketanserine:

5HT2 blocker, antihypertensive agent.

Ritanserine:

5HT2 blocker, prevents platelets sggregation.

Ondansetron:

 5HT3 blocker, used to prevent nausea and vomiting of cancer chemotherapy.