Nafith Abu Tarboush
DDS, MSc, PhD
natarboush@ju.edu.jo
www.facebook.com/natarboush

Bioenergitics

Energy & why do we need it?

- Definition: Capacity to perform work
- Types of energy:
 - ✓ 1- Kinetic: Energy in the process of doing work or Energy of motion

- ✓ 2- Potential: Energy content stored in a matter
- Why products are more stable than the reactants?
- Whether a reaction occurs or not!

Why Do Chemical Reactions Occur? Concept of Free Energy, Gibbs Equation

- > Free energy change
- Exergonic vs. endergonic

- The concept of activation energy
- > Favorability vs. rates of reactions (thermodynamic vs. kinetic)
- Do all favorable reactions occur at room temperature? "The theory of collision"

(b) An endergonic reaction

Effect of temperature, concentration & catalysts

$$\Delta G = \Delta G^{\circ}$$

 $\Delta G = \Delta G^{\circ} + 0$

- $ightharpoonup \Delta G$ = the free energy difference of a system at any condition
- ∠G° = the free energy difference of a system at standard conditions (25°C° & 1 atmospheric pressure, 1M concentration of reactants & products, pH = 7)
- Which one of these terms determine the feasibility of the reaction?

Reversible Reactions & Chemical Equilibrium

- What is a reversible reaction?
- What is the chemical equilibrium? Chemical equilibrium is an active, dynamic condition
- At equilibrium, are concentrations equal?

ΔG & Keq

- ➤ At equilibrium, △G=o
- \triangleright Can a reaction has a + \triangle G° & still be favorable?

For a reaction
$$\mathbf{A} + \mathbf{B} \longleftrightarrow \mathbf{C} + \mathbf{D}$$

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{o} + \mathbf{R} \mathbf{T} \ln \left(\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right)$$

$$\Delta G = \Delta G^{o'} + RT \ln \left(\frac{[C] [D]}{[A] [B]} \right)$$

$$0 = \Delta G^{o'} + RT \ln \left(\frac{[C] [D]}{[A] [B]} \right)$$

$$\Delta G^{o'} = -RT \ln \left(\frac{[C] [D]}{[A] [B]} \right)$$

$$defining K'_{eq} = \left(\frac{[C] [D]}{[A] [B]} \right)$$

$$\Delta G^{o'} = -RT \ln K'_{eq}$$

K' _{eq}	ΔG°' kJ/mol	Starting with 1 M reactants & products, the reaction:
10 ⁴	- 23	proceeds forward (spontaneous)
10 ²	- 11	proceeds forward (spontaneous)
$10^0 = 1$	0	is at equilibrium
10 ⁻²	+ 11	reverses to form "reactants"
10 ⁻⁴	+ 23	reverses to form "reactants"

The Effect of Changing Conditions on Equilibria

defining
$$\mathbf{K'_{eq}} = \frac{\mathbf{[C][D]}}{\mathbf{[A][B]}}$$

$$\Delta \mathbf{G^{o'}} = -\mathbf{RT ln K'_{eq}}$$

$$aA + bB + \cdots \rightleftharpoons mM + nN + \cdots$$

- When a stress is applied to a system at equilibrium, the equilibrium shifts to relieve the stress
- > Stress: any change that disturbs the original equilibrium
 - Effect of Changes in Concentration
 - ✓ What happens if a reactant/product is continuously supplied/ removed?
 - ✓ Metabolic reactions sometimes take advantage of this effect
 - Effect of Changes in Temperature
 - ✓ Endothermic/exothermic are favored by increase/decrease in temperature, respectively.
 - Effect of a catalyst on equilibrium

Energy and metabolic pathways

- Anabolic Pathways (Endergonic reactions): Those that <u>consume</u> energy to <u>build</u> biomolecules (Protein, Glycogen & lipids)
- Catabolic Pathways (Exergonic reactions): Those that <u>release</u> energy by <u>breaking down</u> complex molecules into simpler compounds such as glycolysis
- Metabolism is essentially a linked series of chemical reactions (biochemical pathways)

Biochemical (metabolic) pathways

- Are interdependent
- Are subjected to thermodynamics laws
- Their activity is coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Biosynthetic & degradative pathways are almost always distinct (regulation)
- Metabolic pathways are <u>linear</u>, <u>cyclic or</u> <u>spiral</u>

The energy machinery of the cell

Prokaryotic cells vs. eukaryotic cells

The mitochondria (singular, mitochondrion) (90% of the body's

energy ATP)

The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest

The ability of mitochondria to reproduce (athletes)

Maternal inheritance

Stages of Energy Production

- Stage 1 (Digestion):
 - ✓ Mouth, stomach, & small intestine
 - ✓ Carbohydrates to glucose & other sugars
 - ✓ Proteins to amino acids
 - ✓ Triacylglycerols to glycerol plus fatty acids
 - ✓ From there to blood
- Stage 2 (Acetyl-coenzyme A)

Attachment o facetyl group to coenzyme A

- Stage 3: citric acid cycle
- Stage 4: electron transfer chain & oxidative phosphorylation

ATP

- > ATP is the energy currency of the cell
- What is a high energy molecule?
- Why ATP?

Has an intermediate energy value, so can be coupled

Compound +H₂O	Product + phosphate	ΔG°
Phosphoenol pyruvate	Pyruvate	-14.8
1,3 bisphosphoglycerate	3 phosphoglycerate	-11.8
Creatine phosphate	Creatine	- 10.3
ATP	ADP	- 7-3
Glucose 1- phosphate	Glucose	-5.0
Glucose 6- phosphate	Glucose	-3.3

Is ATP a good long-term energy storage molecule?

As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a

supply of this essential molecule

Tissue	ATP turnover (mole/day)
Brain	20.4
Heart	11.4
Kidney	17.4
Liver	21.6
Muscle	19.8
Total	90.6

How do our cells get energy for unfavorable biochemical work?

The concept of coupling

How do our cells get energy for unfavorable biochemical work?

- ΔG° Values are additive
 - i. Through phosphoryl transfer reactions:
 - √Step 2 (+3.3 vs. -4 kcal/mole)
 - √Step 2 + 4 = -2.35 kcal/mole
 - ✓ The net value for synthesis is irrelevant to the presence or absence of enzymes
 - ii. Activated intermediates (step 4 is facilitated by steps 5&6)
- II. \(\Delta \text{G Depends on Substrate and Product Concentration (step 4 has a ratio of 6/94; +1.65 kcal/mol, if 3/94; -0.4kcal/mol)

How do our cells get energy for unfavorable biochemical work?

III. Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis

O
II
C
$$\sim OPO_3^{2-}$$

H $\sim C - OH$
I
 $CH_2OPO_3^{2-}$

 $H_{2}\stackrel{O}{N} = C$ $N \sim P - O^{-}$ $N \sim P - O^{-}$ $N - CH_{3}$ CH_{2} COO^{-}

1,3-Bisphosphoglycerate C

Creatine phosphate

The acetyl CoA as an example

- Coenzyme A is a universal carrier (donor) of Acyl groups
- Forms a thio-ester bond with carboxyl group

- Acetyl CoA + H₂O Acetate + CoA ΔG° = -7.5kcal
- ► Acetylcholine + $H_2O \longrightarrow Acetate + Choline \Delta G^o = -3 kcal$
 - + Choline \longrightarrow Acetylcholine + $\triangle G^{\circ} = +3$ kcal
 - > Acetyl CoA + \longrightarrow + CoA \triangle G° = -7.5 kcal
 - Acetyl CoA + Choline Acetylcholine + COA

THERMOGENESIS

- > The first law of thermodynamics
- Heat production is a natural consequence of "burning fuels"
- > Thermogenesis refers to energy expended for generating heat (37°C) in addition to that expended for ATP production
- Shivering thermogenesis (ATP utilization): responding to sudden cold with asynchronous muscle contractions
- Non-shivering thermogenesis (ATP production efficiency)

Oxidation-Reduction reactions (Redox)

- Oxidation:
 - ✓ Gain of Oxygen
 - ✓ Loss of Hydrogen
 - ✓ Loss of electrons

- > Reduction:
 - ✓ Gain of Hydrogen
 - ✓ Gain of electron
 - ✓ Loss of Oxygen
- E= redox Potential: it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)

Oxidation-Reduction reactions (Redox)

- $\rightarrow \Delta E = E_A E_D$
- $\triangleright \Delta E$ = Redox difference of a system in any condition
- ΔE° = Redox difference of a system in standard condition (25C° and 1 atmosphere pressure, pH = 7)
 - \triangleright Does $\triangle E$ determine the feasibility of a reaction?

$$\triangleright \Delta G^{\circ} = -nf\Delta E^{\circ}$$

ΔG is related to ΔE

- \triangleright ΔE is directly proportional to ΔG°
 - $\triangleright \Delta G^{\circ} = -nf\Delta E^{\circ}$

- > Where:
- n = the number of transferred electron
- F = the Faraday constant (96.5 kJ/volt) (23.06 kcal/volt)
- E = the reduction potential (volts);
- G = the free energy (Kcal or KJ)
 - In other words; energy (work) can be derived from the transfer of electrons
 - > Or
 - Oxidation of foods can be used to synthesize ATP

Oxidation-Reduction reactions (Redox)

Always involve <u>a pair</u> of chemicals: an electron donor and an electron acceptor (Food vs. NAD⁺)

NAD+ vs. FAD

NAD+ vs. NADP+ (fatty acid synthesis and detoxification reactions)

Riboflavin
$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{4}C$$

$$H_{2}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{4}C$$

$$H_{2}C$$

$$H_{3}C$$

$$H_{4}C$$

$$H_{4}C$$

$$H_{5}C$$

$$H_{7}C$$

Oxidation-Reduction reactions (Redox)

The more negative the reduction potential, the greater is the energy available for ATP generation

Table 19.4. Reduction Potentials of Some Oxidation-Reduction Half-Reactions

Reduction Half-Reactions	E ⁰ ′ at pH 7.0
$1/2 O_2 + 2H^+ + 2 e^- \rightarrow H_2O$	0.816
Cytochrome a-Fe ³⁺ + 1 e ⁻ → cytochrome a-Fe ²⁺	0.290
$CoQ + 2H^+ + 2 e^- \rightarrow CoQH_2$	0.060
Fumarate + 2H ⁺ + 2 e ⁻ → succinate	0.030
Oxalacetate + $2H^+ + 2e^- \rightarrow malate$	-0.102
Acetaldehyde + 2H ⁺ + 2 e ⁻ → ethanol	-0.163
Pyruvate + 2H ⁺ + 2 e [−] → lactate	-0.190
Riboflavin + $2H^+ + 2e^- \rightarrow riboflavin-H_2$	-0.200
$NAD^+ + 2H^+ + 2 e^- \rightarrow NADH + H^+$	-0.320
Acetate + 2H ⁺ + 2 e ⁻ → acetaldehyde	-0.468