

Restriction endonucleases, RFLP, and gene cloning

Resources

- This lecture
- Cooper, pp 120-124

Endonucleases

- Enzymes that degrade DNA within the molecule rather than from either end (exonucleases)
- Restriction endonucleases: Enzymes that recognize and cut (break) the phosphodiester bond between nucleotides at specific sequences (4- to 8-bp restriction sites) generating restriction fragments.
- Type II restriction endonucleases: Always cleave always at the same place generating the same set of fragments
 - EcoRI (isolated from E. coli) cuts at 5'-GAATTC-3'
- Some enzymes cut DNA at <u>related</u> sites
 - Hinfl (from Haemophilus influenzae) recognizes 5'-ANTC-3'
 ('N' is any nucleotide)
 - Cuts at 5'-AATC-3', 5'-ATTC-3', 5'-AGTC-3' and 5'-ACTC-3'

Biological purpose of restriction endonucleases

They are present in bacteria to protect them from bacteriophages that infect bacteria by transferring their DNA into them restricting their growth.

What is transduction?

Types of cleavages

- Restriction enzymes cut DNA in two different ways:
 - Blunt: enzymes cut at the same position on both strands giving a blunt ended fragments
 - Staggered (off-center): enzymes cut the two DNA strands at different positions generating sticky or cohesive ends
 - The DNA fragments have short single-stranded overhangs at each end.

5' vs. 3' overhangs

(B) 5' and 3' overhangs

Palindromic sequences

The sequences recognized by restriction endonucleases—their sites of action—read the same from left to right as they do from right to left (on the complementary strand).

EcoRI	5 '	GAATTC	3 '
	3 '	CTTAAG	5'
HindIII	5'	AAGCTT	3 '
	3 '	TTCGAA	5'
SmaI	5'	ccceee	3 '
	3 '	GGGCCC	5'
	5'	шссъ	3 '
TaqI	5	TCGA	3
	3 '	AGCT	5'

DNA ligase

- Covalently joins DNA ends (example, restriction fragments)
- Catalyzes the formation of 3'→ 5' phosphodiester bonds between the 3'-hydroxyl end of one strand and the 5'-phosphate end of another strand

Advantage of restriction endonucleases

- Restriction fragment length polymorphism (RFLP)
- Cloning

DNA polymorphisms

- Individual variations in DNA sequence may create or remove restriction-enzyme recognition sites generating different restriction fragments
- Remember: our cells are diploid (alleles can be homozygous or heterozygous)
- What is an allele?

Restriction fragment length polymorphism

- The presence of different DNA forms in individuals generates a restriction fragment length polymorphism, or RFLP.
- These can be detected by
 - Gel electrophoresis
 - Southern blotting

Example

Variant 1 EcoRI does not cut

GCCGCATTCTA CGGCGTAAGAT Variant 2

EcoRI does cut

GCC<mark>GAATT</mark>CTA CGG<mark>CTTAAG</mark>AT

Uncut

1 2-1 2 Phenotype

RFLP in the clinic

- RFLP can be used as diagnostic tools.
- For example, if a mutation that results in the development of a disease also causes the generation of distinctive RFLP fragments, then we can tell
 - if the person is diseased as a result of this mutation
 - from which parent this allele is inherited

Disease detection by RFLP

Think!! What would you see in a gel?

Example 1: Disease detection by RFLP (sickle cell anemia)

Supplementary information

Male Female	Unaffected		Marriage
	Affected		Consanguineous marriage (between close relatives)
	Heterozygous for recessive allele		Separated or divorced
	Deceased		Nonidentical twin
, , •	Index case (propositus)	\bigcirc	Identical twin
0	Heterozygous carrier for X-linked recessive alle	ele	

Normal/ Normal carrier Diseases AAAa $\mathbf{a}\mathbf{a}$

Example 2: Disease detection by ASO

Cystic fibrosis)

ASO: Allele-specific oligonucleotide

No electrophoresis is done here, but the whole DNA is spotted on a membrane and hybridized with two ASO's, one at a time.

Example 3: Paternity testing

Example 4:

Forensics

Cloning

- Cloning means that you make several copies of one thing.
- A clone is a genetically identical population, whether of organisms, cells, viruses, or DNA molecules.
- Every member of the population is derived from a single cell, virus, or DNA molecule.

How do we clone a DNA molecule?

- a DNA fragment of interest is inserted into a DNA carrier (called a vector) that can be replicated.
- The resulting DNA molecule is what is known as a recombinant DNA molecule.

Fig. 8-4: Cloning and production of identical DNA Molecules

Using plasmids as vectors

- Bacterial plasmids are considered excellent vectors.
- These are bacterial circular DNA that is not part of the main circular DNA chromosome of the bacterium.
- A plasmid exists as a closed circle and replicates independently of the main bacterial genome.

Features of plasmids

- Most plasmid vectors contain at least three essential parts required for DNA cloning:
 - Can replicate
 - Can be selected for/against by an internal drugresistance gene (selectable marker)
 - Can inset a foreign DNA fragment

Making of recombinant DNA

- Both DNA fragments (the DNA to be cloned and a vector) are cut by the same restriction endonuclease that makes sticky-ended DNA fragments
- When mixed, they will bind to each other

Recombinant plasmid

Mix E. coli cells with plasmids in presence of CaCl₂

Culture on nutrient agar plates containing ampicillin

Bacterial chromosome

Transformed E. coli cell survives

Cells that do not take up plasmid die on ampicillin plates

Independent plasmid replication

DNA replication a general mechanism

Resources

- This lecture
- Cooper, pp. 191-207

Transfer of molecular information

Some basic information

- The entire DNA content of the cell is known as genome
- DNA is organized into chromosomes
- Bacterial genome: usually one and circular chromosome
- Eukaryotic genome: multiple, linear chromosomes complexed with proteins known as histones

Different suggestions on possible mode of DNA replication

Bidirectionally...speaking

Replication moves progressively along the parental DNA double helix bidirectionally.

Because of its Y-shaped structure, this active region is

called a replication fork.

New DNA (long vs short)

 A long strand and shorter pieces (Okazaki fragments) of DNA are present at the growing replication fork

Components of DNA replication

RNA primer

- In order for the DNA polymerase to initiate replication, it requires a RNA primer, to be added first complementary to the DNA template
- It is synthesized by a primase

2. DNA polymerase III elongates RNA primers with new DNA.

3. DNA polymerase I removes RNA at 5' end of neighboring fragment and fills gap.

4. DNA ligase connects adjacent fragments.

DNA helicases and SSB proteins

- For DNA synthesis to proceed, the DNA double helix must be opened up ahead of the replication fork
- Opening up the DNA is done by two types of protein contribute to this process
 - DNA helicases
 - single-strand DNA-binding proteins

DNA helicases

- DNA helicases use ATP to open up the double helical DNA as they move along the strands.
- In bacteria, helicases form a complex with the primase called primosome.

Single-strand DNA-binding (SSB) proteins

Single-strand DNA-binding (SSB) proteins bind tightly to exposed single-stranded DNA strands without covering the bases, which remain available for templating.

- These proteins:
 - prevent the formation of the short hairpin structures
 - protect single-stranded DNA from being degraded
 - aid helicases by stabilizing the unwound, singlestranded conformation

DNA polymerases in prokaryotes

- DNA polymerase III: DNA polymerization at the growing fork in E. coli
 - The complex of primosome and polymerase is known as replisome
- DNA polymerase I:
 - 5'-to-3' exonuclease activity (removal of RNA primer) of each Okazaki fragment.
 - Fills in the gaps between the lagging-strand fragments.
 - DNA repair
- DNA polymerase II, IV, and V: DNA repair

DNA polymerase III

- The DNA polymerase III is a very large protein composed of 10 different polypeptides.
- The core polymerase is composed of three subunits:

 - e subunit is a 3'-to-5' exonuclease that removes incorrectly added (mispaired) nucleotides from the end of the growing chain.

How accurate is DNA replication?

- The frequency of errors during replication is only one incorrect base per 10⁹ to 10¹⁰ nucleotides incorporated
- Why is fidelity high?
 - Hydrogen base-pairing is highly stable between G and C and between A and T. So, the DNA polymerase can catalyze the formation of phosphodiester bonds when the right hydrogen bonding takes place between the correction bases.
 - Proofreading mechanism (a 3' \rightarrow 5' exonuclease activity)-Remember ϵ subunit of RNA pol III

DNA topoisomerases

- A swivel is formed in the DNA helix by proteins known as DNA topoisomerases
- A DNA topoisomerase breaks then re-forms phosphodiester bonds in a DNA strand.
- Topoisomerase I produces an transient single-strand break (or nick)
 - ATP-independent
- Topoisomerase II is responsible for untangling chromosomes by making a transient double-strand break
 - also known as gyrase in bacteria
 - ATP-dependent

Replication Origin in bacteria

- Bacterial replication starts at a origin known as origin of replication (OriC)
- oriC regions contain repetitive 9-bp and AT-rich 13-bp sequences
- 9-mer: binding sites for the DnaA protein
- 13-mers: AT-rich region
 - facilitates separation of the double strand DNA

Possible mechanism

When DnaA protein binds to 9-mers, it applies stress on the AT-rich region resulting in DNA "melting".

Two replication forks

(bacteria)

The two replication forks proceed in opposite directions until they meet up roughly halfway around the chromosome.

Origins of replication in human genome

An average human chromosome may have several hundred replicators (origins of replication).

DNA polymerase in eukaryotes

Eukaryotic cells contain 9 DNA polymerases; most of them for DNA repair.

TABLE 10.4

The Biochemical Properties of Eukaryotic DNA Polymerases					
	α	δ	ε	β	γ
Mass (kDa)					
Native	>250	170	256	36-38	160-300
Catalytic core	165-180	125	215	36-38	125
Other subunits	70, 50, 60	48	55	None	35, 47
Location	Nucleus	Nucleus	Nucleus	Nucleus	Mitochondria
Associated functions					
$3' \rightarrow 5'$ exonuclease	No	Yes	Yes	No	Yes
Primase	Yes	No	No	No	No
Properties					
Processivity	Low	High	High	Low	High
Fidelity	High	High	High	Low	High
Replication	Yes	Yes	Yes	No	Yes
Repair	No	?	Yes	Yes	No

The mechanism of replication

- The polymerases do not have a $5' \rightarrow 3'$ exonuclease.
 - The primer is removed by two special enzymes.
 - DNA polymerase δ then fills in the gap.

Role of chromatin

- Replication is linked to DNA packing by histones.
- DNA is freed from histones by chromatin-remodeling proteins in order for enzymes to move along the DNA.
- New histones are assembled onto the DNA behind each replication fork by chromatin assembly factors (CAFs).

A problem in the lagging strand

- As the growing fork approaches the end of a linear chromosome, the lagging-strand template is not completely replicated. Why?
- When the final RNA primer is removed, there is no place onto which DNA polymerase can build to fill the resulting gap leading to shortening of the lagging strand.

Telomerase comes to the rescue

- Telomerase prevents the progressive shortening of the lagging strand. How?
- Telomere DNA sequences consist of many GGGTTA repeats extending about 10,000 nucleotides.
- Telomerase recognizes the repeat sequence and elongates it in the 5'-to-3' direction using a RNA template/primer that is a component of the enzyme itself.

How do we age?

- As we grow older, the activity of telomerase is reduced.
- An inverse relationship between age and telomeric length has been observed.
- The gradual shortening of the chromosome ends leads to cell death, and it has even been suggested that life span is determined by the length of telomeres.

Elixir of youth

