

Enzymes Part II: Enzymes-cofactors

Dr. Mamoun Ahram Summer semester, 2015-2016

Catalytic strategies of enzymes

- Enzymes carry out reactions utilizing different catalytic strategies.
 - Some enzymes, such as chymotrypsin, rely on amino acid residues within the active site.
 - Almost all polar amino acids participate in nucleophilic catalysis.
 - Ser, Cys, Lys, & His can participate in covalent catalysis
 - Histidine: pKa, physiological pH & acid-base catalysis
 - Other enzymes increase their repertoire by employing cofactors (nonprotein compounds that participate in the catalytic process).
 - Conjugated enzymes

Classification of cofactors

Coenzymes are either activationtransfer coenzymes or oxidation-Tight **Metallo-proteins** reduction coenzymes. **Metals** Metal-associated Loose proteins **Small organic molecules Tight Prosthetic groups** (co-enzymes) Loose **Co-substrates Cofactors** Quinones **Protein-based Stable-free radicals Cross-linked amino** Apoenzyme + cofactor = holoenzyme acids

Water-Soluble Vitamins

Name	Coenzyme or Active Form	Primary biochemical function	
Thiamin	Thiamine pyrophosphate (TPP)	Aldehyde-group transfer	
Riboflavin	Flavin mononucleotide (FMN) Flavin adenine dinucleotide (FAD)		
Nicotinic Acid	Nicotinamide adenine Hydrogen-Atom (electron) trans dinucleotide (NAD) Nicotinamide adenine Hydrogen-Atom (electron) trans dinucleotide phosphate (NADP)		
Pantothenic Acid	Coenzyme A (CoA)	Acyl-group transfer	
Pyridoxine	Pyridoxal Phosphate	Amino-group transfer	
Biotin	Biocytin	Carboxyl transfer	
Folate	Tetrahydrofolate	One-Carbon group transfer	
Vitamin B ₁₂	Coenzyme B ₁₂	1,2 shift hydrogen atoms	
Lipoic Acid	Lipoyllysine	Hydrogen-Atom and Acyl-group transfer	
Ascorbic Acid	Ascorbic acid, dehydroascorbic acid	Cofactor in hydroxylation	

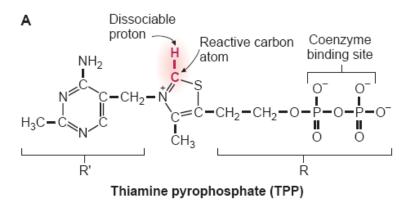
ACTIVATION-TRANSFER COENZYMES

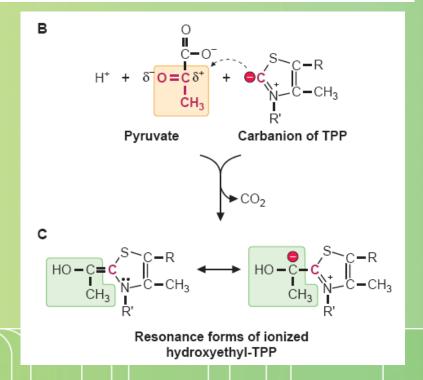
They usually participate directly in catalysis by forming a covalent bond.

Characteristics:

- Two groups in the coenzyme:
 - Forms a covalent bond with substrate (functional group)
 - Binds tightly to the enzyme (binding group)
- Dependence on the enzyme for additional specificity of substrate & additional catalytic power

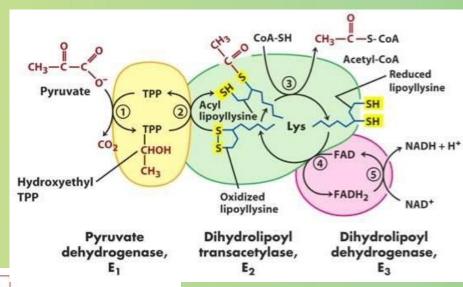
Thiamin pyrophosphate, TPP

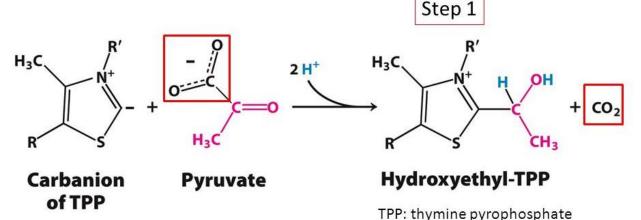



- Thiamin (vitamin B1) is rapidly converted to its active form, thiamin pyrophosphate, TPP, in the brain & liver.
- It is involved in decarboxylation reactions.
- The pyrophosphate provides negatively charged oxygen atoms and chelates Mg2+ that is tightly bound to the enzyme.

Mechanism of action

The functional group is the reactive carbon atom, which forms a covalent bond with a substrate keto group while cleaving the adjacent carbon—carbon bond.




Pyruvate dehydrogenase complex

Pyruvate + CoA + NAD⁺
$$\longrightarrow$$
 acetyl CoA + CO₂ + NADH

 Decarboxylation of pyruvate into acetyl CoA by the pyruvate dehydrogenase complex

α-ketoglutarate dehydrogenase

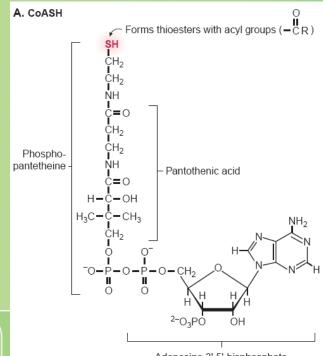
Decarboxylation of α-ketoglutarate into succinyl CoA by α-ketoglutarate dehydrogenase

COA—S
$$CH_2 + NAD^+ + COA \longrightarrow CH_2 + CO_2 + NADH$$

$$CH_2 + COO^-$$

$$COO^-$$

Coenzyme A (CoA)



- Source: pantothenate (B5), which is a precursor of alanine and pantoic acid.

 H₃C OH
 HOCH₂—C-C-CO-NH-CH₂CH₂CH₂CH₂COOH
- It is important for the metabolism of carbohydrate, fats and proteins where it attacks carbonyl groups & forms acyl thioesters (the "A").

H₃C

- Binding group: adenosine 3',5'bisphosphate (tight & reversible)
- Functional group: sulfhydryl group (nucleophile)

Examples of enzymes

Decarboxylation of pyruvate into acetyl CoA by the pyruvate dehydrogenase complex

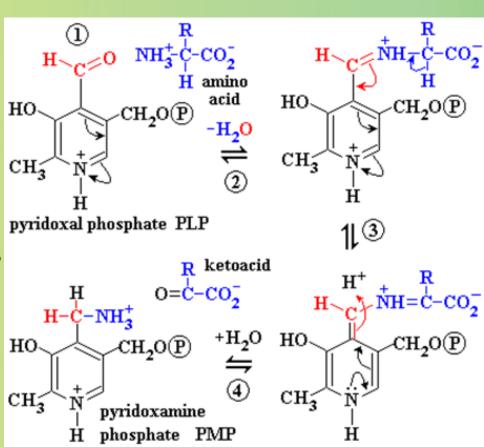
Pyruvate + CoA + NAD⁺
$$\longrightarrow$$
 acetyl CoA + CO₂ + NADH

Condensation of acetyl CoA and oxaloacetate into citrate by citrate synthase

$$\begin{array}{c} \text{CoA} \\ \text{CoA} \\ \text{CoA} \\ \text{CoA} \\ \text{H}_2\text{C} \\ \text{H}_2\text{C} \\ \text{H}_2\text{C} \\ \text{COO}^- \\ \text{H}_2\text{C} \\ \text{H}_2\text{C} \\ \text{COO}^- \\ \text{H}_2\text{C} \\ \text{COO}^- \\ \text{H}_2\text{C} \\ \text{COO}^- \\ \text{CoO}^-$$

Pyridoxal phosphate (vitamin B6)

- Sources: pyridoxal, pyridoxamine and pyridoxine
- Metabolism of amino acids via reversible transamination reactions


CH ₂ OH H ₃ C CH ₂ OH	CHO HO — CH₂OH H₃C — N N	CH ₂ NH ₂ HO CH ₂ OH H ₃ C N	CHO HO — CH ₂ O — P — OH H ₃ C — N H
Pyridoxine	Pyridoxal	Pyridoxamine	pyridoxal phosphate

Amino $acid_1 + \alpha$ -ketoacid₂ \Longrightarrow amino $acid_2 + \alpha$ -ketoacid₁

Mechanism of action

- The reactive aldehyde forms a covalent bond with the amino groups, then the ring nitrogen withdraws electrons from bound amino acid (cleavage of bond).
 - Binding and functional groups are within the ring.

Examples

Aspartate aminotransferase

Aspartate + α-ketoglutarate === oxaloacetate + glutamate

Alanine aminotransferase

Alanine + α-ketoglutarate ==== pyruvate + glutamate

Biotin (vitamin B7)

- It is required for carboxylation reactions
 - (covalently bound to Lys)
- Source: food & intestinal bacteria
- Deficiencies are generally seen after long antibiotic therapies or excessive consumption of raw eggs (egg white protein, avidin, high affinity for biotin)
- Examples of enzymes
 - Pyruvate carboxylase
 - Acetyl CoA carboxylase (fatty acid synthesis)

Pyruvate + CO_2 + ATP + $H_2O \Longrightarrow$ oxaloacetate + ADP + P_i + 2 H⁺

$$H_3C$$
 S
 $CoA + ATP + $HCO_3^ H_2$
 $CoA + ADP + P_i + H^+$$

Acetyl CoA

Malonyl CoA

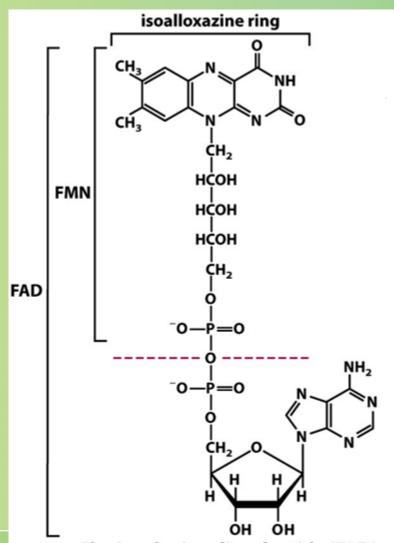
B. Biotin

Reactive group

Lysine

The biotin-lysine (biocytin) complex

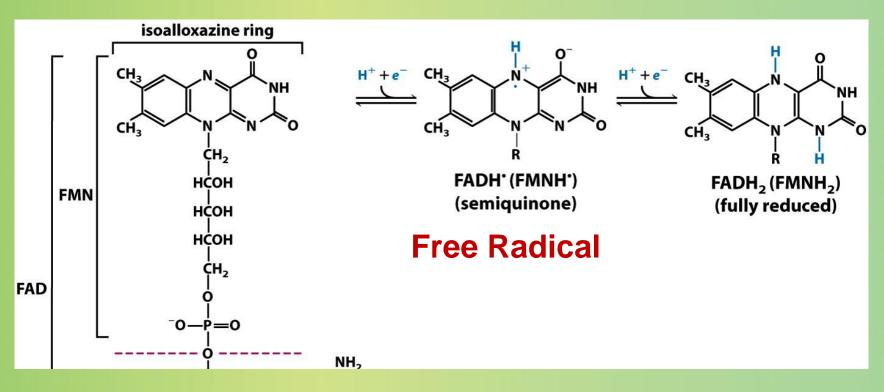
OXIDATION—REDUCTION COENZYMES



- A large number of coenzymes work in enzymes categorized as oxidoreductases.
- Each coenzyme has a unique functional group that accepts and donates electrons and is specific for the form of electrons it transfers (e.g., hydride ions, hydrogen atoms, oxygen).
- These do not form covalent bonds with the substrate, a portion of the coenzyme binds the enzyme.
- Most common: NAD+ (niacin, B3) & FAD (riboflavin, B2)
- Others: work with metals to transfer single electrons to O2 (Vitamins E & C)
 - Again: Dependence on the enzyme for additional specificity of substrate & additional catalytic power

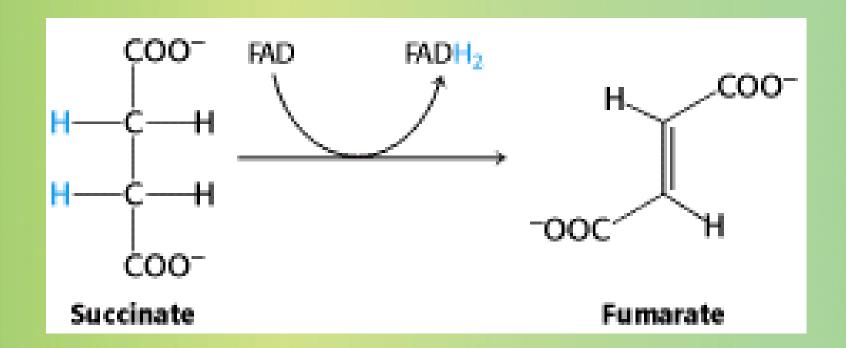
FAD and FMN

- The precursor is riboflavin (vitamin B2).
- Both are prosthetic groups that are important for redox reactions.
- Proteins that require FMN or FAD as cofactors are called flavoproteins.

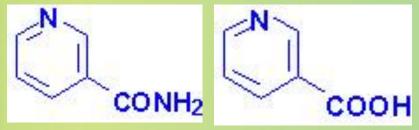


Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)

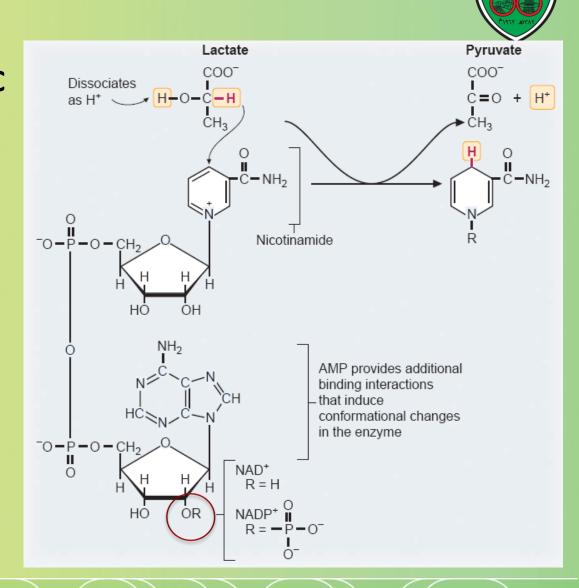
Why is it a prosthetic group?

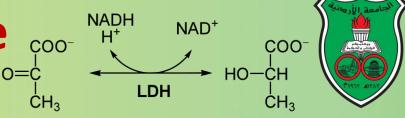

- Protection mechanism
- Transfer of electrons is sequential.

Succinate dehydrogenase

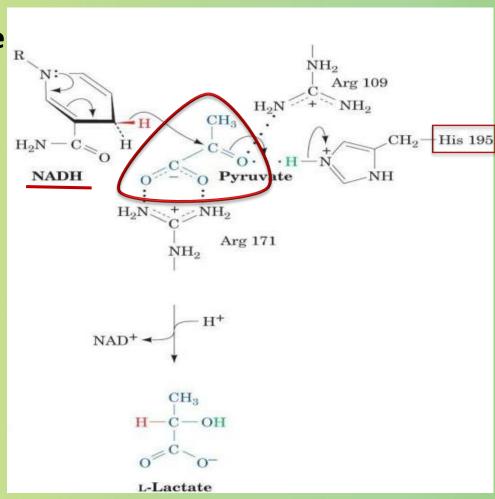

Oxidation of succinate into fumarate by succinate dehydrogenase

NAD+ and NADP+

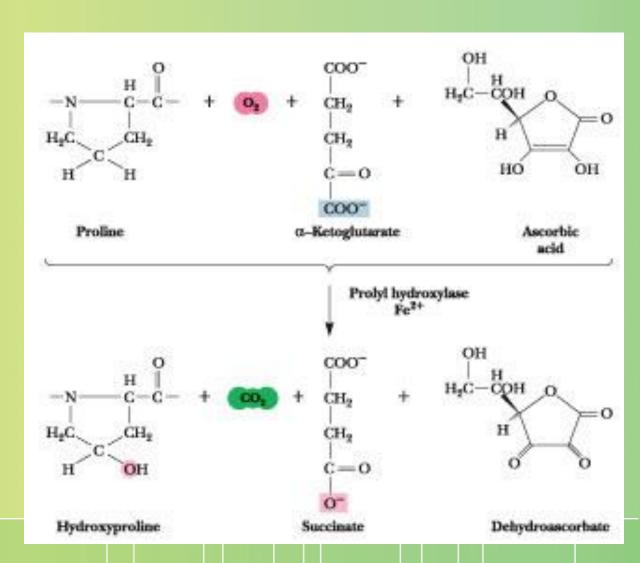

Precursor of nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) is niacin (vitamn B3).


These are cosubstrates for numerous dehydrogenases.

Mechanism of action


- The functional group (C opposite to N). The cofactor accepts a hydride ion from the substrate, dissociates, & a keto group (CO) is formed.
- The ADP portion of the molecule binds tightly.

Lactate dehydrogenase


- The enzyme's histidine binds the proton of (-OH) on lactate making it easier for NAD+ to pull off the other hydrogen with both electrons (a hydride).
- A keto group (CO) is formed.
- Shown is the reverse reaction.

Vitamin C

- Ascorbic acid
- Example: prolyl hydroxylase
 - synthesizes 4hydroxyproline (collagen)
- An antioxidant

- Ascorbate acts as an antioxidant by being available for energetically favorable oxidation.
- Reactive oxygen species oxidize (take electrons from) ascorbate into a radical itself, which is oxidized into dehydroascorbate.
- The reactive oxygen species are reduced to water, while the oxidized forms of ascorbate are relatively stable and unreactive, and do not cause cellular damage.

Metals

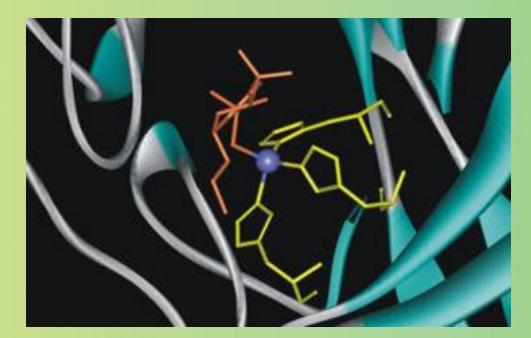
Metal	Enzyme	
Zn ²⁺	Carbonic anhydrase Carboxypeptidase	
Mg ²⁺	Hexokinase	
Se	Glutathione peroxidase	
Mn ²⁺ Superoxide dismutase		

- They act as electrophiles.
- They assist in binding of the substrate, or they stabilize developing anions in the reaction.
- They can also accept and donate electrons in oxidation reduction reactions.

Advantages

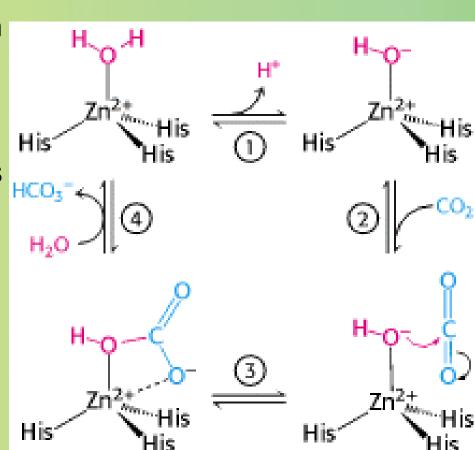
- They carry positive charges and, hence, can form relatively strong yet kinetically labile bonds.
- They are stable in more than one oxidation.
- They can bind multiple ligands in their coordination sphere enabling them to participate in binding substrates or coenzymes to enzymes.
 - For example, Mg⁺² plays a role in the binding of the negatively charged phosphate groups of thiamine pyrophosphate to anionic or basic amino acids in the enzyme.
 - The phophate groups of ATP are usually bound to enzymes through Mg⁺² chelation.

Carbonic anhydrases

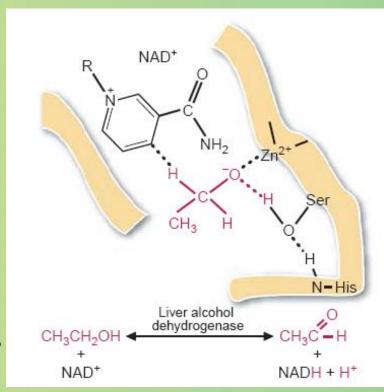


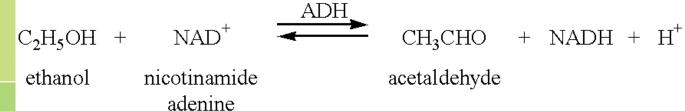
- CO₂ hydration and HCO₃ dehydration occur spontaneously at reasonable rates in the absence of catalysts, yet almost all organisms contain carbonic anhydrases, because they are often coupled to rapid processes such as respiration.
- Mutations in carbonic anhydrases have been found to cause osteopetrosis (excessive formation of dense bones accompanied by anemia) and mental retardation.

Zn binding to the enzyme


- Zinc is found only in the +2 state in biological systems.
- In carbonic anhydrase, a zinc atom is bound to three imidazole rings of three histidine residues and an additional site is occupied by a water molecule.

Mechanism of action


- Zinc facilitates the release of a proton from a water molecule generating a hydroxide ion.
- The CO2 substrate binds to the enzyme's active site and is positioned to react with the hydroxide ion.
- The hydroxide ion attacks the carbon dioxide, converting it into bicarbonate ion.
- The catalytic site is regenerated with the release of the bicarbonate ion and the binding of another molecule of water.



Catalytic Metals

- Some metals can bind anionic substrates or intermediates of the reaction to alter their charge distribution, thereby contributing to catalytic power.
- The histidine pulls an H off the active site serine, which pulls the H off of the substrate –OH group, leaving the oxygen with a negative charge that is stabilized by zinc, and a hydride is the transferred to NAD+.
- Zinc in ADH as His in lactate dehydrogenase.

dinucleotide