

Enzymes Part III: Enzyme kinetics

Dr. Mamoun Ahram Summer semester, 2015-2016

Kinetics

- Kinetics is deals with the rates of chemical reactions.
- Chemical kinetics is the study of the rates of chemical reactions.
- \rightarrow For the reaction (A \rightarrow P), The velocity, v, or rate, of the reaction is the amount of P formed or the amount of A consumed per unit time, t. That is,

$$v = \frac{d[P]}{dt}$$

$$v = \frac{-d[A]}{dt}$$

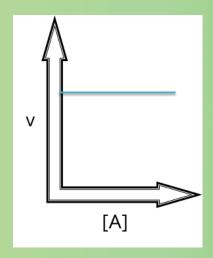
Rate law

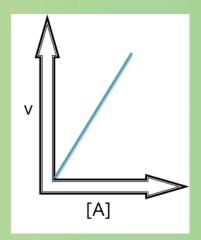
- The mathematical relationship between reaction rate and concentration of reactant(s) is the rate law (the mathematical equation describing how the concentrations of reactants affect the rate of the reaction during a certain period).
- \rightarrow For the reaction (A \rightarrow P), the rate law is

$$v = \frac{-d[A]}{dt} = k[A]$$

- From this expression, the rate is proportional to the concentration of A, and k is the rate constant.
 - \triangleright k has the units of (time) -1, usually sec-1.

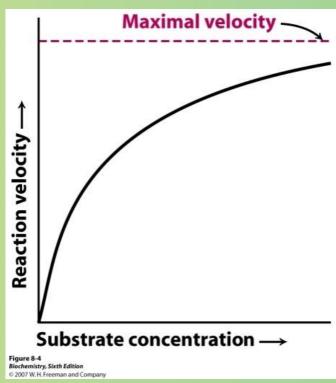
First-order reaction



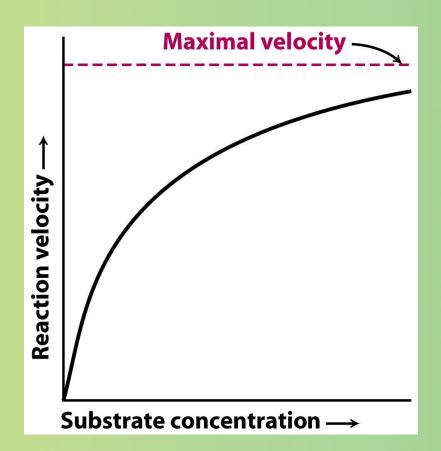

- Since reaction order refers to the number of molecules involved in a reaction, the simple reaction of (A → P) is a first-order reaction.
- The rate of the reaction is directly proportional to the concentration of the reactant.
- Thus, as the concentration of A is reduced, the rate of the reaction slows down, and vice versa.

Zero- vs. first-order reaction

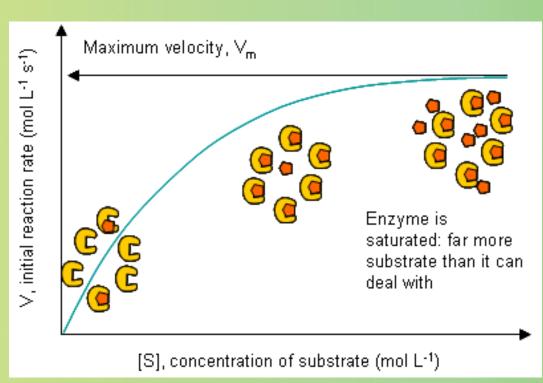
Overall order	V=	Dimentions of k
Zero	k	(conc.)(time) ⁻¹
First	k(A)	(time) ⁻¹



Enzyme kinetics


- The kinetics of the enzymecatalyzed reactions are different than those of a typical chemical reaction,
 - Enzyme-catalyzed reactions have hyperbolic plots.
- The study of enzyme kinetics addresses the biological roles of enzymatic catalysts.

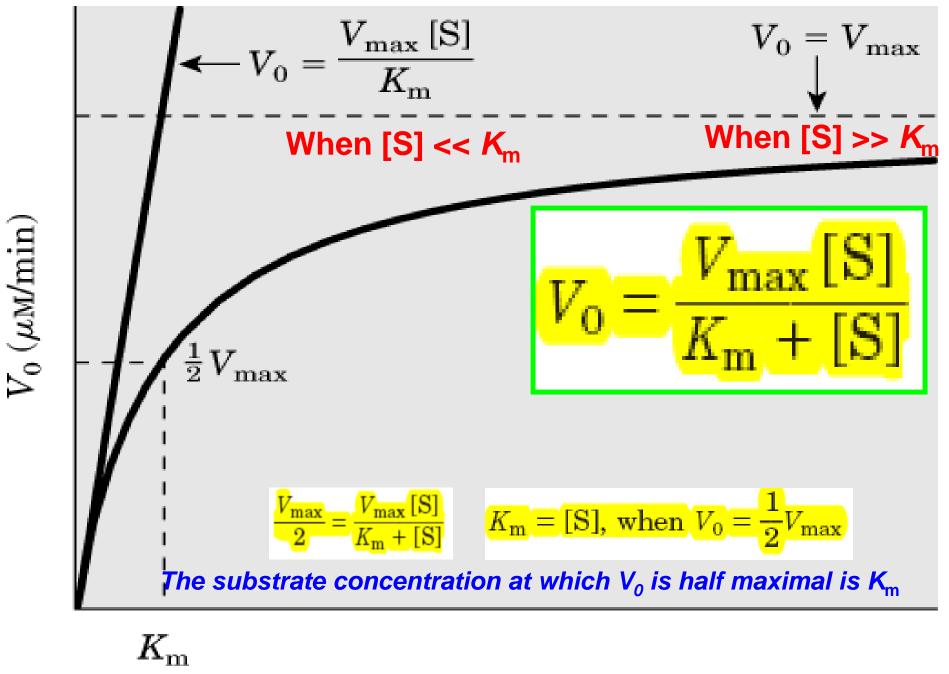
How?


- For many enzymes, initial velocity (V₀) varies with the substrate concentration [S].
- The rate of catalysis rises linearly as substrate concentration increases and then begins to level off and approach a maximum at higher substrate concentrations.

Why?

The hyperbolic plot is known as a saturation plot because the enzyme becomes "saturated" with substrate, i.e. each enzyme molecule has a substrate molecule associated with it.

More explanation


- At a fixed concentration of enzyme, V₀ is almost linearly proportional to [S] when [S] is small.
- However, V₀ is nearly independent of [S] when [S] is large
- The maximal rate, Vmax, is achieved when the catalytic sites on the enzyme are saturated with substrate.
- Vmax reveals the turnover number of an enzyme.
 - The number of substrate molecules converted into product by an enzyme molecule in a unit time when the enzyme is fully saturated with substrate.
- At Vmax, the reaction is in zero-order rate since the substrate has no influence on the rate of the reaction.

The Michaelis-Menten equation

- Two scientists, Leonor Michaelis and Maud Menten, proposed a simple model to describe enzyme kinetics.
- The Michaelis-Menten equation is a quantitative description of the relationship between the rate of an enzyme catalyzed reaction (V₀), substrate concentration [S], a rate constant (K_M) and maximal velocity (Vmax).

$$V_0 = V_{\text{max}} \frac{[S]}{[S] + K_M}$$

[S] (mM)

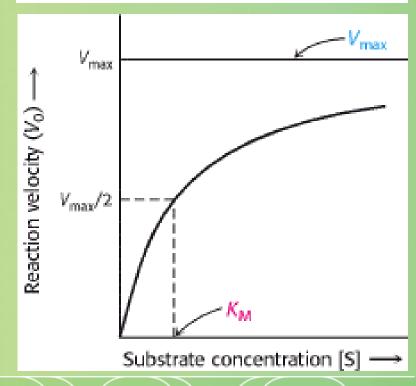
The Michaelis constant (Km)

For a reaction:

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

K_M, called the Michaelis constant is

$$K_{\rm M} = \frac{k_{-1} + k_2}{k_1}$$


- In other words, Km is related to the rate of dissociation of substrate from the enzyme to the enzyme-substrate complex
- K_m describes the affinity of enzyme for the substrate.

Km

- K_M is the concentration of substrate at which half the active sites are filled.
- When $[S] = K_M$, then $V_0 = V_0$
- Therefore, it provides a measure of enzyme affinity towards a substrate.
- The lower the K_M of an enzyme towards a substrate is, the higher its affinity to the same substrate is.

$$V_0 = V_{\text{max}} \frac{[S]}{[S] + K_M}$$

$$V_0 = V_{\text{max}} \frac{[S]}{[S] + K_M}$$

- At very low substrate concentration, when [S] is much less than K_M, V₀ = (K_M)[S]; that is, the rate is directly proportional to the substrate concentration.
- At high substrate concentration, when [S] is much greater than K_M , $V_0 = V_{max}$; that is, the rate is maximal, independent of substrate concentration.

Note

- Each substrate will generate a unique K_M and Vmax for a given enzymatic process.
- The K_M values of enzymes range widely.
- For most enzymes, K_M lies between 10⁻¹ and 10⁻¹ M.

Enzyme	Substrate	$K_{\rm m}$ (mm)
Catalase	H ₂ O ₂	25
Hexokinase (brain)	ATP	0.4
	p-Glucose	0.05
	D-Fructose	1.5
Carbonic anhydrase	HCO ₃	26
Chymotrypsin	Glycyltyrosinylglycine	108
	N-Benzoyltyrosinamide	2.5
β -Galactosidase	D-Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

Example

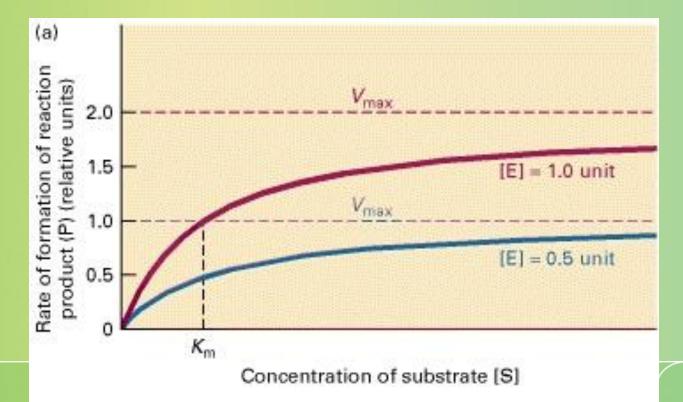
A biochemist obtains the following set of data for an enzyme that is known to follow Michaelis-Menten kinetics. Approximately, Vmax of this enzyme is ... & K_M is ...?

5000 & 699

699 & 5000

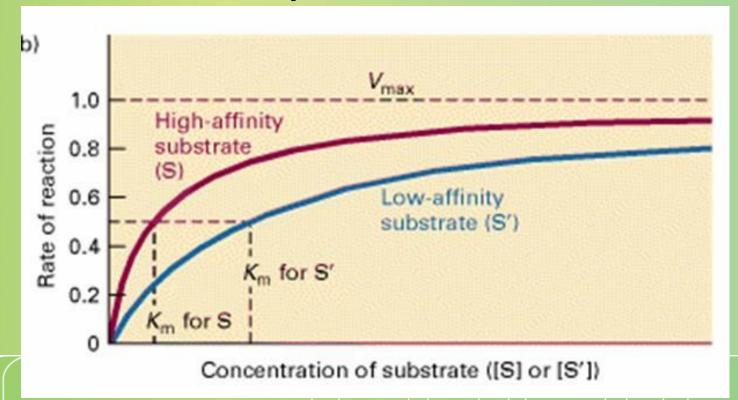
621 & 50

94&1


700 & 8

Substrate	Initial
Concentration	velocity
(μM)	(µmol/min)
1	49
2	96
8	349
50	621
100	676
1000	698
5000	699

Example 1 of K_M


Doubling the concentration of enzyme causes a proportional increase in the reaction rate, so that the maximal velocity V_{max} is doubled; the K_M, however, is unaltered

Example 2 of K_M

- A reactions is catalyzed by an enzyme with substrate S (high affinity) and with substrate S' (low affinity).
- Vmax is the same with both substrates, but K_M is higher for S', the low-affinity substrate.

Biological significance of Km

Effect of alcohol

The physiological consequence of K_M is illustrated by the sensitivity of some individuals to ethanol.

Such persons exhibit facial flushing and rapid heart rate (tachycardia) after ingesting even small amounts of

alcohol.

Enzymatic reactions

In the liver, alcohol dehydrogenase converts ethanol into acetaldehyde.

$$CH_3CH_2OH + NAD^+ \xrightarrow{dehydrogenase} CH_3CHO + H^- + NADH$$

Normally, the acetaldehyde, which is the cause of the symptoms when present at high concentrations, is processed to acetate by acetaldehyde dehydrogenase.

The effect

- Most people have two forms of the acetaldehyde dehydrogenase, a low K_M mitochondrial form and a high K_M cytosolic form.
 - These are called isozymes (keep that in mind)
- In vulnerable persons, the mitochondrial enzyme is less active due to the substitution of a single amino acid, and acetaldehyde is processed only by the cytosolic enzyme.
- Because the cytosolic enzyme has a high K_M, less acetaldehyde is converted into acetate; excess acetaldehyde escapes into the blood and causes the physiological effects.

Measurements of enzyme kinetics

Vmax & kcat

For the enzymatic reaction

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

The maximal rate, V_{max} , is equal to the product of k_2 , also known as k_{cat} , and the total concentration of enzyme.

$$V_{\text{max}} = k_2 [E]_T$$

Enzyme	Substrate	$k_{\rm cat}$ (s ⁻¹)
Catalase	H_2O_2	40,000,000
Carbonic anhydrase	HCO ₃	400,000
Acetylcholinesterase	Acetylcholine	14,000
β -Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

Kcat

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

- kcat, the turnover number, is the concentration (or moles) of substrate molecules converted into product per unit time per concentration (or moles) of enzyme, or when fully saturated.
- It describes how quickly an enzyme acts, i.e. how fast the ES complex proceeds to E + P.
- In other words, the maximal rate, Vmax, reveals the turnover number of an enzyme if the total concentration of active sites [E]T is known.
- kcat is a constant you can look up for any given enzyme.

$$k_{\text{cat}} = V_{\text{max}} / [E]_{\text{T}}$$

Example

You are working on the enzyme "Medicine" which has a molecular weight of 50,000 g/mol. You have used 10 μg of the enzyme in an experiment and the results show that the enzyme at best converts 9.6 μmol of the substrate per min at 25°C. The turnover number (kcat) for the enzyme is:

A. $9.6 \, s^{-1}$

B. 48 s⁻¹

C. 800 s⁻¹

D. 960 s⁻¹

E. 1920 s⁻¹

Example

a 10⁻⁶ M solution of carbonic anhydrase catalyzes the formation of 0.6 M H₂CO₃ per second when it is fully saturated with substrate.

✓ Hence,
$$k_{\text{cat}}$$
 is $6 \times 10^5 \text{ s}^{-1}$
✓ 10^4 min^{-1}

- Each catalyzed reaction takes place in a time equal to $1/k_2$, which is 1.7 μs for carbonic anhydrase.
- The turnover numbers of most enzymes with their physiological substrates fall in the range from 1 to 10⁴ per second.

40,000,000 molecules of H₂O₂ are converted to H₂O and O₂ by ONE catalase molecule within one second

table 8-7

Turnover Numbers (k_{cat}) of Some Enzymes

Enzyme	Substrate	$k_{\rm cat}$ (s ⁻¹)
Catalase	H_2O_2	40,000,000
Carbonic anhydrase	HCO_3^-	400,000
Acetylcholinesterase	Acetylcholine	14,000
β -Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

Kcat vs. Km

REAL STATE

Table 6.2

Turnover Numbers and Km for Some Typical Enzymes

Enzyme	Function	k _{cat} = Turnover Number*	K _M **
Catalase	Conversion of H_2O_2 to H_20 and O_2	4×10^7	25
Carbonic Anhydrase	Hydration of CO ₂	1×10^6	12
Acetylcholinesterase	Regenerates acetylcholine, an important substance in transmission of nerve impulses, from acetate and choline	1.4×10^4 9	0.5×10^{-2}
Chymotrypsin	Proteolytic enzyme	1.9×10^2 6	6.6×10^{-1}
Lysozyme	Degrades bacterial cell-wall polysaccharides	0.5	6×10^{-3}

 k_{cat} values vary over a range of nearly 2X10⁷

K_M values vary over a range of nearly 4000

 $K_{\rm cat}/K_{\rm M}$, the range is near 10³

Specificity & Efficiency: Physiological [S]/ K_M

- Most enzymes are not normally fully saturated.
- Under physiological conditions, the [S]/K_M ratio is typically between 0.01 and 1.0
 - Specificity constant (k_{cat}/K_M): is also called catalytic efficiency tells us how rapidly the enzyme binds and how quickly it turns over.
 - $> k_{cat}/K_{M}$ (M⁻¹ min⁻¹) is indicative of:
 - ✓ Enzyme's substrate specificity: the higher the ratio, the higher the specificity.
 - ✓ Enzyme's catalytic efficiency:
 the higher the ratio, the more efficient
 the enzyme.

$$V = \frac{V_{\text{max}}\left[\mathbf{S}\right]}{K_{\mathbf{M}} + \left[\mathbf{S}\right]} = \frac{k_{\text{cat}}\left[\mathbf{E}_{\mathbf{T}}\right]\!\left[\mathbf{S}\right]}{K_{\mathbf{M}} + \left[\mathbf{S}\right]}$$

$$V = (k_{\text{cat}}/K_{\text{M}}) [E][S]$$

Rate of reaction (velocity)

Rate of reaction is calculated as <u>concentration</u> of substrate disappearing (or concentration of product appearing) per unit time (mol L⁻¹. sec⁻¹ or M. sec⁻¹).

Enzyme activity

- In order to measure enzyme activity, we measure the number of moles of substrate disappearing (or products appearing) per unit time (mol. sec-1)
- In other words,
 enzyme activity = rate of reaction × reaction volume

Specific activity

- Specific activity is a measure of enzyme purity and quality.
- It is calculated as moles of substrate converted per unit time per unit mass of enzyme (mol . sec⁻¹ . g⁻¹).
- In other words,

Specific activity = enzyme activity / mass of enzyme (grams)

This is useful in determining enzyme purity after purification.

Turnover number

Turnover number (kcat) is related to the specific activity of the enzyme where it is

Turnover number = specific activity × molecular weight of enzyme

- It is expressed as moles of substrate converted per unit time (usually per second)/moles of enzyme (min⁻¹ or sec⁻¹)
- Remember: $k_{cat} = V_{max} / [E]_T$

Sample calculations:

A solution contains initially 25.0×10^{-4} mol L⁻¹ of peptide substrate and 1.50 µg chymotrypsin, in 2.5 mL volume. After 10 minutes, 18.6×10^{-4} mol L⁻¹ of peptide substrate remain. Molar mass of chymotrypsin is 25,000 g mol⁻¹.

peptide substrate consumed

= 6.4 x 10⁻⁴ mol L⁻¹ in 10 minutes

Rate of reaction

= 6.4 x 10⁻⁵ mol L⁻¹ min⁻¹

Enzyme activity

= 6.4 x 10⁻⁵ mol L⁻¹ min⁻¹ x 2.5 x 10⁻³ L

(rate × volume)

 $= 1.6 \times 10^{-7} \text{ mol min}^{-1}$

Specific activity

= $1.6 \times 10^{-7} \text{ mol min}^{-1} / 1.50 \, \mu \text{g}$

(activity / mass)

= $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1}$

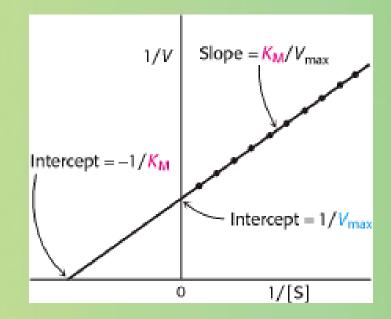
Turnover number

= $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1} \times 25,000 \text{ g mol}^{-1} \times 10^{6} \mu\text{g g}^{-1}$

(sp. act. × molar mass)

 $= 2.7 \times 10^3 \text{ min}^{-1} = 45 \text{ s}^{-1}$

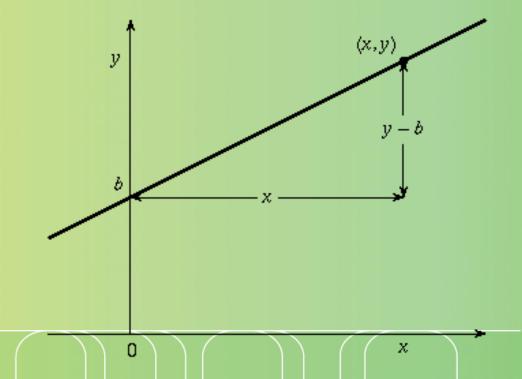
Disadvantage of Michaelis-Menten equation



- Determination of Km from hyperbolic plots is not accurate since a large amount of substrate is required in order to reach Vmax.
- This prevents the calculation of both Vmax and K_M.

The Lineweaver-Burk or double-reciprocal plot

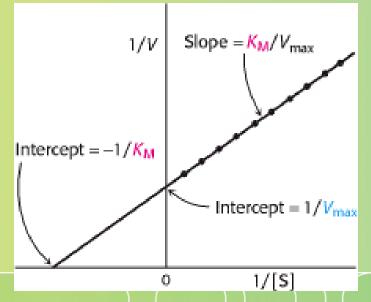
- A plot of 1/V₀ versus 1/[S], called a Lineweaver-Burk or double-reciprocal plot, yields a straight line with an intercept of 1/Vmax and a slope of K_M /Vmax.
- The intercept on the x-axis is -1/ K_M.


$$\frac{1}{V_{\rm o}} = \frac{1}{V_{\rm max}} + \frac{K_{\rm M}}{V_{\rm max}} \cdot \frac{1}{[\rm S]}$$

$$\frac{1}{V_{\text{o}}} = \frac{1}{V_{\text{max}}} + \frac{K_{\text{M}}}{V_{\text{max}}} \cdot \frac{1}{[\text{S}]}$$

y = b + mx

- \rightarrow y is y-axis = 1/ V_0
- x is x-axis = 1/[S]
- m is slope = K_M/ Vmax
- B is 1/Vmax

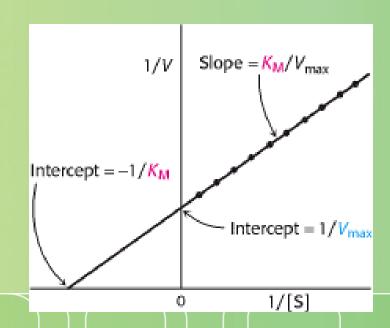


$$\frac{1}{V_{\text{o}}} = \frac{1}{V_{\text{max}}} + \frac{K_{\text{M}}}{V_{\text{max}}} \cdot \frac{1}{[\text{S}]}$$

y = b + mx

If x = 0, then y = b (x-axis is 0, then y-intercept = 1/Vmax)

$$\frac{1}{V_{\text{o}}} = \frac{1}{V_{\text{max}}} + \frac{K_{\text{M}}}{V_{\text{max}}} \cdot \frac{1}{[\text{S}]}$$



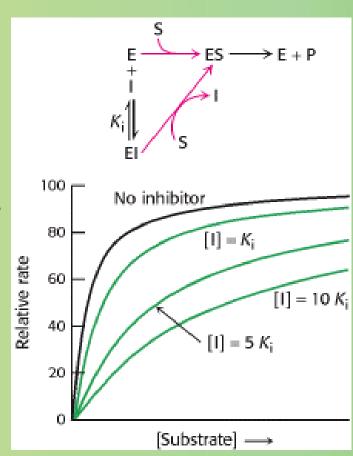
y = b + mx

If y = 0, then mx = -b (y-axis is 0, then x-intercept = -1/Km)

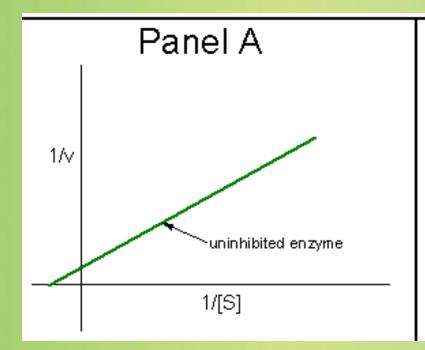
How?

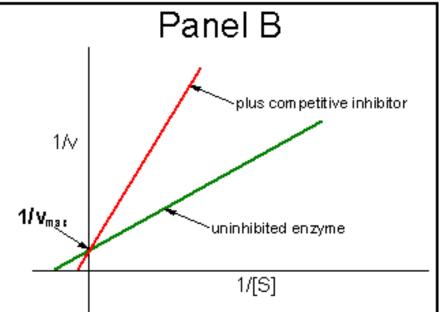
0 = 1/Vmax + (K_M/Vax) . (1/[S]) -1/Vmax = (K_M/Vax) . (1/[S]) -1 = K_M . (1/[S]) -1/ K_M= 1/[S]

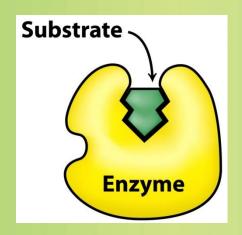
Enzyme inhibitors

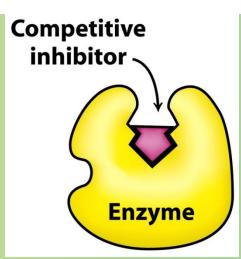


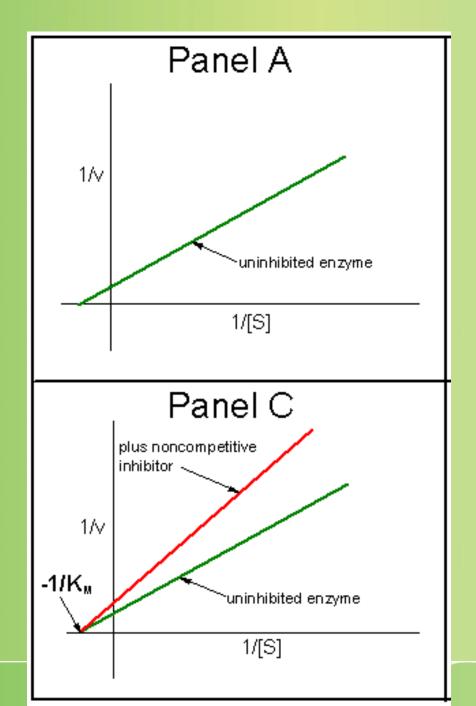
- Enzyme inhibition can be either reversible or irreversible.
- An irreversible inhibitor dissociates very slowly from its target enzyme because it has become tightly bound to the enzyme, mainly covalently.
 - The kinetic effect of irreversible inhibitors is to decrease the concentration of active enzyme.
- Reversible inhibition is characterized by a rapid dissociation of the enzyme-inhibitor complex.
 - Usually these inhibitors bind to enzymes by non-covalent forces and the inhibitor maintains a reversible equilibrium with the enzyme.
 - Reversible inhibitors can be competitive, noncompetitive, and uncompetitive inhibitors.

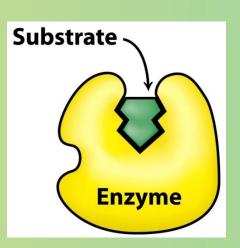

Competitive inhibition

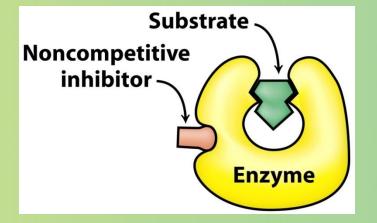



- In competitive inhibition, the inhibitor competes with the substrate for the active site.
- Because increasing the amount of substrate can overcome the inhibition, Vmax can be reached in the presence of a competitive inhibitor.
- In the presence of a competitive inhibitor, an enzyme will have the same Vmax as in the absence of an inhibitor, but the value of K_M is increased.






Noncompetitive inhibition


- In noncompetitive inhibition, the inhibitor binds E or ES complex at a site other than the catalytic site
- Substrate can also bind to the enzymeinhibitor complex
- However, the enzyme-inhibitorsubstrate complex does not proceed to form product
- The value of Vmax is decreased while the value of K_M is unchanged
- Noncompetitive inhibition cannot be overcome by increasing the substrate concentration

