

DNA sequencing and PCR

Resources

- This lecture
- Cooper, pp. 127-129, 124-125, Ch. 5, pp.159-162, 166-171

What is DNA sequencing?

- DNA sequencing is the process of determining the exact order of nucleotides in a genome.
- Importance:
 - Identification of genes and their localization
 - Identification of protein structure and function
 - Identification of DNA mutations
 - Genetic variations among individuals in health and disease
 - Prediction of disease-susceptibility and treatment efficiency
 - Evolutionary conservation among organisms

DNA sequencing of organism genome

- Viruses and prokaryotes first
- Human mitochondrial DNA
- The first eukaryotic genome sequenced was that of yeast, Saccharomyces cerevisiae.
- The genome of a multicellular organism, the nematode Caenorhabditis elegans.
- Determination of the base sequence in the human genome was initiated in 1990 and completed in May 2006 via the Human Genome Project

SPECIES	BASE PAIRS (estimated)	GENES (estimated)	CHROMOSOMES
Human (Homo sapiens)	3.2 billion	~ 25,000	46
Mouse (Mus musculus)	2.6 billion	~ 25,000	40
Fruit Fly (Drosophilia melanogaster)	137 million	13,000	8
Roundworm (Caenorhabditis elegans)	97 million	19,000	12
Yeast (Saccharomyces cerevisia)	12.1 million	6,000	32
Bacteria (Escherichia coli)	4.6 million	3,200	1
Bacteria (H. influenzae)	1.8 million	1,700	1

Nucleotides per genomes

Method of DNA sequencing

 Based on premature termination of DNA synthesis by dideoxynucleotides

Deoxyribonucleoside triphosphate (dNTP)

Dideoxyribonucleoside triphosphate (ddNTP)

The process...

- DNA synthesis is initiated from a primer that has been labeled with a radioisotope
- Four separate reactions are run, each including deoxynucleotides plus one dideoxynucleotide (either A, C, G, or T)
- Incorporation of a dideoxynucleotide stops further DNA synthesis because no 3 hydroxyl group is available for addition of the next nucleotide

Generation of fragments

- A series of labeled DNA molecules are generated, each terminated by the dideoxynucleotide in each reaction
- These fragments of DNA are then separated according to size by gel electrophoresis and detected by exposure of the gel to X-ray film
- The size of each fragment is determined by its terminal dideoxynucleotide, so the DNA sequence corresponds to the order of fragments read from the gel

- 5' TAGCTGACTC3'
 - 3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

DNA polymerase

- + dATP, dGTP, dCTP, dTTP
- + ddGTP in low concentration
- 5' TAGCTGACTCAG3'
- 3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...
- 5' TAGCTGACTCAGTTCTTG3'
- 3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...
- 5' TAGCTGACTCAGTTCTTGATAACCCG3'
- 3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

Fluorescence-based DNA sequencing

- Large-scale DNA sequencing is frequently performed using automated systems using fluorescence-based reactions using labeled ddNTPs
- In this case, all four terminators can then be placed in a single tube, and only one reaction is necessary
- The reactions are run into one lane on a gel and a machine is used to scan the lane with a laser

Here's what the products would look like in separate qel lanes.

Here's what the products would look like in a single gel lanes.

Detection of fragments

- The wavelength of fluorescence can be interpreted by the machine as an indication of which reaction (ddG, ddA, ddT, or ddC) the product came from
- The fluorescence output is stored in the form of chromatograms

Normal

Affected C. [1920 C>A]

What does it mean?

Polymerase Chain Reaction

- In 1984, Kary Mullis devised a method called the polymerase chain reaction (PCR) for amplifying specific DNA sequences
- PCR allows the DNA from a selected region of a genome to be amplified a billionfold, effectively "purifying" this DNA away from the remainder of the genome
- The PCR method is extremely sensitive; it can detect a single DNA molecule in a sample

Components of PCR reaction

- A pair of primers that hybridize to the target DNA.
 - These primers should be specific for the target sequence and which are often about 15-25 nucleotides long. The region between the primers is amplified
- All four deoxyribonucleoside triphosphates (dNTPs: dATP, dCTP, dGTP and dTT)
- A heat-stable DNA polymerase

DNA polymerases

- Suitably heat-stable DNA polymerases have been obtained from microorganisms whose natural habitat is hot springs
- For example, the widely used Taq DNA polymerase is obtained from a thermophilic bacterium, Thermus aquaticus, and is thermostable up to 94°C

PCR cycle

- Denaturation, typically at about 93-95°C. At this temperature the hydrogen bonds that hold together the two polynucleotides of the double helix are broken, so the target DNA becomes denatured into single-stranded molecules
- Reannealing at temperatures usually from about 50°C to 70°C where the primers anneal to the DNA
- DNA synthesis, typically at about 70-75°C, the optimum for Taq polymerase

GTCATAGCATTATTATTATTATTCAGGACTA CAGTATCGTAATAATAATAATAAGTCCTGAT

A template sequence with 5 ATT repeats.

FIRST CYCLE BEGINS

PCR cycles

- 20-30 cycles of reaction are required for DNA amplification,
 - the products of each cycle serving as the DNA templates for the next-hence the term polymerase "chain reaction"
- Every cycle doubles the amount of DNA
- After 30 cycles, there will be over 250 million short products derived from each starting molecule

Detection of DNA fragments

 This DNA fragment can be easily visualized as a discrete band of a specific size by agarose gel electrophoresis

Importance of primers

- The specificity of amplification depends on the specificity of the primers to not recognize and bind to sequences other than the intended target DNA sequences
- How can you prevent it?
- How can you take advantage of it?

Annealing temperature

Advantages

- Easy, fast, sensitive, robust
- Discovery of gene families
- Disease diagnosis

Disadvantages

- Primers must be known
- Contamination
- Product length is limited (usually <5 Kb)
- Accuracy is an issue
- Not quantitative

Exploring genomes

Forensic medicine

- Viral and bacterial load: the quantity of virus in a given volume. How?
 - Quantitative PCR
- Paternity and criminal cases. Why?
 - An individual DNA profile is highly distinctive because many genetic loci are highly variable within a population.

Quantitative PCR (qPCR)

- SYBR green binds to double-stranded DNA and fluoresces only when bound.
- A way of relative quantitation of amount of DNA in a sample is by amplifying it in the presence of SYBR green.
- The higher the amount of DNA, the sooner it is detected.

- http://www.youtube.com/watch?v=kvQWKcMdyS4
- http://www.bio.davidson.edu/courses/immunology/flas
 h/rt_pcr.html

33

Components of the human genome

Repetitive DNA sequences

Tandem vs. dispersed

Types of DNA repeats

Satellite (macro-satellite) DNA

Centromeric repeats (171 bp) unique to each chromosome (you make chromosome-specific probes)

Telomeric repeats

Mini satellite sequences or VNTRs (variable number of tandem repeats) of 20 to 100 bp

STRs (short tandem repeats) of 2 to 10 bp

Polymorphisms of VNTR and STR

- STRs and VNTRs are highly variable among individuals (polymorphic)
 - Thus, they are useful in DNA profiling for forensic testing

Microsatellites and VNTRs as DNA Markers

VNTR in medicine and more

The picture below illustrates VNTR allelic length variation among 6 individuals.

The likelihood of 2 unrelated individuals having same allelic pattern extremely improbable

Real example

single-locus probe but multiple alleles

Thompson & Thompson Genetics in Medicine, p. 130, 1991

Single nucleotide polymorphism (SNPs)

- Another source of genetic variation
- Single-nucleotide substitutions of one base for another
- Two or more versions of a sequence must each be present in at least one percent of the general population
- SNPs occur throughout the human genome about one in every 300 nucleotide base pairs.
 - ~10 million SNPs within the 3-billion-nucleotide human genome

Categories of SNPs

Transposons (jumping genes)

- They are segments of DNA that can move from their original position in the genome to a new location.
- Two classes:
 - DNA transposons (2-3% of human genome)
 - RNA transposons or retrotransposons (40% of human genome).
 - Long interspersed elements (LINEs)
 - Short interspersed elements (SINEs) An example is Alu (300 bp)
- Diseases often caused by transposons include hemophilia A and B, severe combined immunodeficiency, porphyria, predisposition to cancer, and Duchenne muscular dystrophy.

