Cell Overview

Cell membrane

Cell membrane

Glycocalyx & Microvilli

Basophilic

- Basophilic structures are stained by basic dyes:
 - Basic dyes are positive
 - Basophilic structures are negative (ex. DNA, RNA, ribosomes, RER)
- Mnemonic:

Basophilic = Blue

Acidophilic (Eosinophilic)

- Acidophilic structures are stained by acid dyes:
 - Acid dyes are negative
 - Acidophilic structures are **positive** (ex. Proteins, collagen, cytoplasm)
- Eosinophilic = Pink

Eosin (H&E)

- Pink
- Stains Eosinophilic structures ex.
 Proteins, collagen, mitochondria (cytoplasm)

Hemotoxylin (H&E)

- Blue, purple or blackish
- Stains Basophilic structures ex. DNA, ribosomes, RNA
 - Euchromatin is DNA in USE. It is spread out, diffuse, and less stained.
 - Heterochromatin is condensed DNA, and stains dark blue.

Heterochromatic and Euchromatic Nuclei

Periodic Acid Schiff & Hematoxylin (PAS)

- Pink, Magenta
- Stains carbohydrates and carb. rich macromolecules ex. Glycogen, mucin, basement membrane, etc.
- If you see PAS, think CARBOHYDRATES.

H&E vs. PAS

- How would you describe the structure at the pointer?
 - a) Eosinophilic
 - b) Basophilic
 - c) Negatively charged
 - d) Positively charged

- How would you describe the structure at the pointer?
 - a) Eosinophilic
 - b) Basophilic
 - c) Negatively charged
 - d) Positively charged

- The pink regions are eosinophilic due to:
 - a) Endosomes
 - b) rER
 - c) Cytosolic proteins
 - d) Golgi
 - e) Cilia

- The pink regions are eosinophilic due to:
 - a) Endosomes
 - b) rER
 - c) Cytosolic proteins
 - d) Golgi
 - e) Cilia

- The apex of this cell stains positively because of
 - a) Ribosomes
 - b) Carbohydrates
 - c) Fats

- The apex of this cell stains positively because of
 - a) Ribosomes
 - b) Carbohydrates
 - c) Fats

Now ... Examine a number of different slides and note the features that they all have in common: nucleus, nucleolus, chromatin, cell membrane and cytoplasm

Notice the following in each slide:

Shape of the cells

Cytoplasm

- Staining reaction
- •Granules

Nucleus

- Staining reaction
- •Nucleolus
- Position
- •Chromatin

Electron Microscopy

EM 1
Identify structures

EM 1
Identify structures

EM1, Q1

Proteins that are made here may end up at which of the following sites:

- a) Outside the cell
- b) Golgi Apparatus
- c) Plasma Membrane
- d) All of the above
- e) None of the above

EM1, Q1

Proteins that are made here may end up at which of the following sites:

- a) Outside the cell
- b) Golgi Apparatus
- c) Plasma Membrane
- d) All of the above
- e) None of the above

EM2

Active or inactive cell?

EM2

- Active or inactive cell?
 - ACTIVE