Naming of enzymes

- In general, enzymes end with the suffix (-ase)
- Most enzymes are named for their substrates and for the type of reactions they catalyze, with the suffix "ase" added
- For example; ATPase is an enzyme that breaks down ATP, whereas ATP synthase is an enzyme that synthesizes ATP
- Some enzymes have common names that provide little information about the reactions that they catalyze
- Examples include the proteolytic enzyme trypsin

Enzyme Classification (structure)

Simple vs. complex (conjugated)

> Holoenzyme vs. apoenzyme

Enzyme Classification (function)

Oxidoreductases: addition or removal of O, O₂, H. Require coenzymes (heme)

- Transferases: transfer of a group from one molecule to another
- Hydrolases: addition of water (carbs. & proteins)

A-OH

B-H

+ H₂O

Enzyme Classification (function)

- Lyases: addition of a molecule (H₂O, CO₂, NH₃) to a double bond or reverse
- Isomerases: one substrate and one product

Ligases: usually not favorable, so they require a simultaneous hydrolysis reaction

A + B + Adenosine triphosphate (ATP)

A-B + Adenosine diphosphate (ADP) +
$$HOPO_3^{2-}$$
 + H^+

O O O Pyruvate carboxylase

CO₂ + CH_3 — C — CO^- + ATP \rightleftharpoons OC — CO^- + ADP + $HOPO_3^{2-}$ + H^+

Pyruvate Oxaloacetate

Oxidoreductases

- These enzymes catalyze oxidation & reduction reactions involving the transfer of hydrogen atoms, electrons or oxygen
- This group can be further divided into 4 main classes:
 - Dehydrogenases
 - ✓ Oxidases
 - ✓ Peroxidases
 - ✓ Oxygenases

Dehydrogenases

- Dehydrogenases catalyze hydrogen transfer from the substrate to a molecule known as nicotinamide adenine dinucleotide (NAD+)
- Lactate dehydrogenase

Alcohol dehydrogenase

Oxidases

- Oxidases catalyze hydrogen transfer from the substrate to molecular oxygen producing hydrogen peroxide as a byproduct
- Glucose oxidase
 - \triangleright β-D-glucose + O₂ \leftrightarrows gluconolactone + H₂O₂

Peroxidases

- Peroxidases catalyze oxidation of a substrate by hydrogen peroxide
- Oxidation of two molecules of glutathione (GSH) in the presence of hydrogen peroxide:

Oxygenases

- Oxygenases catalyze substrate oxidation by molecular O₂
- The reduced product of the reaction in this case is water and not hydrogen peroxide
- There are two types of oxygenases:
- Monooxygenases; transfer one oxygen atom to the substrate, and reduce the other oxygen atom to water
- Dioxygenases, incorporate both atoms of molecular oxygen
 (O2) into the product(s) of the reaction

Transferases

- These enzymes transfer a functional group (C, N, P or S) from one substrate to an acceptor molecule
- Phosphofructokinase; catalyzes transfer of phosphate from ATP to fructose-6-phosphate:
 - Fructose 6-P + ATP ↔ F 1,6 bisphosphate + ADP

1,6-bisphosphate

Transaminases

- ➤ A transaminase transfers an amino functional group from one amino acid to a keto acid, converting the amino acid to a keto acid and the keto acid to an amino acid
- This allows for the interconversion of certain amino acids

Hydrolases

- These enzymes catalyze cleavage reactions while using water across the bond being broken
- Peptidases, esterases, lipases, glycosidases, phosphatases are all examples of hydrolases named depending on the type of bond cleaved

Proteases

- These enzymes catalyze proteolysis, the hydrolysis of a peptide bond within proteins
- Proteolytic enzymes differ in their degree of substrate specificity

- Trypsin, is quite specific; catalyzes the splitting of peptide bonds only on the carboxyl side of lysine and arginine
- Thrombin, catalyzes the hydrolysis of Arg-Gly bonds in particular peptide sequences only

Lyases

- ➤ Catalyze the addition or removal of functional groups from their substrates with the associated formation or removal of double bonds between C-C, C-O and C-N
 - Aldolase; breaks down fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehydes-3-phosphate
 - F 1,6 bisphosphate \Rightarrow DHAP + GAP

 F 1,6 bisphosphate \Rightarrow DHAP + GAP
 - Enolase; interconverts phosphoenolpyruvate and 2phosphoglycerate by formation and removal of double bonds

Isomerases

- Catalyze intramolecular rearrangements
- Glucose-6-phosphate isomerase; isomerizes glucose-6-phosphate to fructose-6-phosphate
- Phosphoglycerate mutase; transfers a phosphate group from carbon number 3 to carbon number 2 of phosphorylated glycerate (BPG intermediate)

Fructose-6-phosphate

→ 3-P glycerate

→ 2 P glycerate

3-phosphoglycerate

Glucose-6-phosphate

2-phosphoglycerate

Ligases

- Ligases join C-C, C-O, C-N, C-S and C-halogen bonds
- The reaction is usually accompanied by the consumption of a high energy compound such as ATP
- Pyruvate carboxylase

 \triangleright Pyruvate + HCO₃- + ATP \leftrightarrows Oxaloacetate + ADP + Pi

