

FUNCTIONAL GROUPS IN CATALYSIS

- Not all enzymes rely on their active site for catalysis (chymotrypsin vs. conjugated enzymes)
- Cojugated: coenzymes, metal ions, & metallocoenzymes

A. Functional Groups on Amino Acid Side Chains:

- Almost all polar amino acids (nucleophilic catalysis)
- Ser, Cys, Lys, & His can participate in covalent catalysis
- Histidine: pKa, physiological pH & acid-base catalysis
- **B.** Coenzymes in Catalysis
 - Usually (but not always) synthesized from vitamins
 - Each coenzyme is specific for a type of reaction
 - They are either: * Activation-transfer coenzymes
 - *Oxidation-reduction coenzymes

Enzyme cofactors

ACTIVATION-TRANSFER COENZYMES

Usually participate directly in catalysis by forming a covalent bond

- Characteristics:
 - Two groups in the coenzyme:
 - Forms a covalent bond (functional group)
 - Binds tightly to the enzyme (binding group)
 - Dependence on the enzyme for additional specificity of substrate & additional catalytic power

ACTIVATION-TRANSFER COENZYMES 1 - TPP

- Thiamine pyrophosphate
- Source: thiamine (B1)
- Decarboxylation reactions
- Pyrophosphate:
 - Provides negatively charged oxygen atoms
 - Chelate Mg²⁺ (tight binding)
 - Functional group (reactive carbon atom)
- Reactive thiamine carbon forms a covalent bond with a substrate keto group while cleaving the adjacent carbon—carbon bond

Resonance forms of ionized hydroxyethyl-TPP

Thiamin (vitamin B1)

- ➤ Thiamin (vitamin B1) is rapidly converted to its active form, thiamin pyrophosphate, TPP, in the brain & liver
- > Required by pyruvate dehydrogenase & α-ketoglutarate

dehydrogenase

COA—S
$$CH_2 + NAD^+ + COA \longrightarrow CH_2 + CO_2 + NADH$$

$$CH_2 + COO^-$$

$$COO^-$$

$$COA$$

$$CH_2 + COO_2 + COO_3$$

$$COO^-$$

ACTIVATION-TRANSFER COENZYMES 2 - Coenzyme A (CoA)

- Source: pantothenate (B5)
- Binding group: adenosine 3',5'-bisphosphate (tight & reversible)
- Functional group: sulfhydryl group (nucleophile)
 - Attacks carbonyl groups & forms acyl thioesters (the "A")
- How it is different from usual? (regeneration & acyl-CoA derivative)
- Like some others (NAD+), why do they call them coenzymes?
 - Common to so many reactions
 - The original form is regenerated by subsequent reactions
 - Synthesized from vitamins
 - The amount in the cell is nearly constant

ACTIVATION-TRANSFER COENZYMES 3 – Biotin (B7)

- Biotin is required for carboxylation reactions (covalently bound to Lys)
- Source: food & intestinal bacteria
- Deficiencies are generally seen
 - Long antibiotic therapies
 - Excessive consumption of raw eggs (egg white protein, avidin, high affinity for biotin)
- Pyruvate carboxylase
- Acetyl CoA carboxylase (fatty acid synthesis)

Pyruvate +
$$CO_2$$
 + ATP + $H_2O \Longrightarrow$ oxaloacetate + ADP + P_i + 2 H⁺

$$H_3C$$
 $COA + ATP + HCO_3^- \longrightarrow G$
 $COA + ATP + P_1 + H^-$

Acetyl CoA

Malonyl CoA

B. Biotin

ACTIVATION-TRANSFER COENZYMES

4 - PLP

- Synthesis: Pyridoxine (B6)
- Functions in the metabolism of amino acids (transaminases)
- Reversible reactions

- Mechanism:
 - Reactive aldehyde forms a covalent bond with the amino groups
 - Ring nitrogen withdraws electrons from bound amino acid (cleavage of bond)

Amino $\operatorname{acid}_1 + \alpha$ -keto $\operatorname{acid}_2 \Longleftrightarrow \operatorname{amino acid}_2 + \alpha$ -keto acid_1 Aspartate $+ \alpha$ -ketoglutarate $\Longleftrightarrow \operatorname{oxaloacetate} + \operatorname{glutamate}$ Alanine $+ \alpha$ -ketoglutarate $\Longleftrightarrow \operatorname{pyruvate} + \operatorname{glutamate}$

OXIDATION—REDUCTION COENZYMES

- A large number of coenzymes
- Do not form covalent bonds with the substrate
- Most common: NAD+ (niacin, B3) & FAD (riboflavin, B2)
- Others: work with metals to transfer single electrons to O2 (Vitamins E & C)
 - Again: Dependence on the enzyme for additional specificity of substrate & additional catalytic power

OXIDATION—REDUCTION COENZYMES $1 - NAD^{+}$

- Functional group (C opposite to N)
- Accepts a hydride ion
- The H⁺ from substrate dissociates, & a keto group (CO) is formed
- (ADP) portion of the molecule binds tightly
- The role of enzymes' Histidine

OXIDATION—REDUCTION COENZYMES 2 — FAD & FMN

CH₂OH HO-CH HO-CH HO-CH CH₂

- Source: Riboflavin (B2)
- FMNH₂ and FADH₂
- Flavoproteins
- FAD and FMN are prosthetic groups (tightly bound)
- Succinate dehydrogenase
- Pyruvate dehydrogenase complex

 H_3C

 H_3C

Water-Soluble Vitamins

Name	Coenzyme or Active Form	Primary biochemical function
Thiamin	Thiamine pyrophosphate (TPP)	Aldehyde-group transfer
Riboflavin	Flavin mononucleotide (FMN) Flavin adenine dinucleotide (FAD)	Hydrogen-Atom (electron) transfer Hydrogen-Atom (electron) transfer
Nicotinic Acid	Nicotinamide adenine dinucleotide (NAD) Nicotinamide adenine dinucleotide phosphate (NADP)	Hydrogen-Atom (electron) transfer Hydrogen-Atom (electron) transfer
Pantothenic Acid	Coenzyme A (CoA)	Acyl-group transfer
Pyridoxine	Pyridoxal Phosphate	Amino-group transfer
Biotin	Biocytin	Carboxyl transfer
Folate	Tetrahydrofolate	One-Carbon group transfer
Vitamin B ₁₂	Coenzyme B ₁₂	1,2 shift hydrogen atoms
Lipoic Acid	Lipoyllysine	Hydrogen-Atom and Acyl-group transfer
Ascorbic Acid	Ascorbic acid, dehydroascorbic acid	Cofactor in hydroxylation

Catalytic Metals

- Metals can be tightly bound (metalloenzymes) or loosely bound (metal-activated enzymes)
- Acting as electrophiles
- Metal-activated enzymes; the metal either required or enhances activity (Mg²⁺, Mn²⁺, Ca²⁺, & K⁺)
- Phosphofructokinase & TPP; (Mg²+) is required to coordinate the phosphate groups on the ATP for a successful reaction (chelation)

Metal	Enzyme	
Zn ²⁺	Carbonic anhydrase	
Zn ²⁺	Carboxypeptidase	
Mg ²⁺	Hexokinase	
Se	Glutathione peroxidase	
Mn ²⁺	Superoxide dismutase	

Fructose-6-phosphate + ATP → fructose-1,6-bisphosphate + ADP

Catalytic Metals

- Alcohol dehydrogenase (ADH)
- Activated serine (pulls a proton off –OH)
- Oxyanion is stabilized by zinc
- Transfer of a hydride ion to NAD⁺
- Zinc in ADH as His in lactate dehydrogenase

Metalloenzymes

- Metal ions are usually incorporated during synthesis & removal of the metal causes denaturation
- ➤ These metal ions may contribute either to the structure or the catalytic mechanism
- ➤ Liver alcohol dehydrogenase (dimer); 2 Zn⁺² in each monomer; one for structural maintenance (joins the two subunits), the other is catalytic

Carbonic anhydrase; A zinc atom is essentially always bound to four or more groups

His His His OH₂

His Carbonic Anhydrase