Kinetics of enzymatic reactions

Kinetics

- Biochemical Kinetics: the science that studies rates of chemical reactions
- An example is the reaction (A \rightarrow P), The velocity, v, or rate, of the reaction A \rightarrow P is the amount of P formed or the amount of A consumed per unit time, t. That is,

$$v = rac{d[\mathrm{P}]}{dt}$$
 or $v = rac{-d[\mathrm{A}]}{dt}$

Reaction Rate Law

- The rate is a term of change over time
- > The rate will be proportional to the conc. of the reactants
- ➤ It is the mathematical relationship between reaction rate and concentration of reactant(s)
- \triangleright For the reaction (A + B \rightarrow P), the rate law is

Rate =
$$\frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{\Delta t} = \frac{\Delta[P]}{\Delta t}$$
 $v = \frac{-d[A]}{dt} = k[A]$

From this expression, the rate is proportional to the concentration of A, and k is the rate constant

The order of the reaction & the rate constant (k)

A multistep reaction can go no faster than the slowest step

$$v = k(A)^{n1}(B)^{n2}(C)^{n3}$$

- k is the rate constant: the higher the activation energy (energy barrier), the smaller the value of k
- (n1+n2+n3) is the overall order of the reaction
- Dimensions of k

Overall order	V=	Dimentions of k
Zero	k	(conc.)(time) ⁻¹
First	<i>k</i> (A)	(time) ⁻¹

Enzyme kinetics

- > Enzymatic reactions may either have a simple behavior or complex (allosteric) behavior
- Simple behavior of enzymes: as the concentration of the substrate rises, the velocity rises until it reaches a limit
 - Thus; enzyme-catalyzed reactions have hyperbolic (saturation) plots

Enzyme kinetics

- ➤ The maximal rate, V_{max}, is achieved when the catalytic sites on the enzyme are saturated with substrate
- V_{max} reveals the turnover number of an enzyme
 - ➤ The number of substrate molecules converted into product by an enzyme molecule in a unit of time when the enzyme is fully saturated with substrate
- At V_{max}, the reaction is in zero-order rate since the substrate has no influence on the rate of the reaction

Expression of enzyme kinetic reactions "Steady State Assumption"

Concentration

$$E + S \rightleftharpoons ES \rightleftharpoons E + P$$

$$k_{-1} E \rightleftharpoons k_{-2}$$

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$v = k_2 ES$$

$$\frac{dES}{dt} = k_1 E . S - k_{-1} ES - k_2 ES$$

$$0 = k_1 E \cdot S - k_{-1} ES - k_2 ES$$

$$E_t = E + ES$$

$$ES = \frac{E_t \cdot S}{(k_{-1} + k_2)/k_1 + S}$$

$$v = \frac{E_t k_2 S}{(k_{-1} + k_2)/k_1 + S}$$

$$v = \frac{Vmax S}{K_m + S}$$

The Michaelis constant (K_m)

For a reaction:

$$\mathsf{E} + \mathsf{S} \underset{k_1}{\overset{k_1}{\Longleftrightarrow}} \mathsf{ES} \xrightarrow{k_2} \mathsf{E} + \mathsf{P}$$

STEADY STATE APPROXIMATION

$$\frac{d[ES]}{dt} = k_1[E][S] - \kappa_1[ES] - \kappa_2[ES] = 0 \text{ (approx.)}$$

$$\frac{[E][S]}{[ES]} = \frac{\kappa_1 + \kappa_2}{k_1} = K_M \quad Equation 1$$

 \succ $K_{\rm m}$, called the Michaelis constant is

$$K_{M} = \frac{k_{-1} + k_{2}}{k_{1}}$$

- \triangleright In other words, $K_{\rm m}$ is related to the rate of disso enzyme to the enzyme-substrate complex
- K_m describes the affinity of enzyme for the substrate

Expression of enzyme kinetic reactions Michaelis-Menten equation

- \triangleright A quantitative description of the relationship between the rate of an enzyme catalyzed reaction (V_0) & substrate concentration [S]
 - \checkmark The rate constant ($K_{\rm m}$) and maximal velocity ($V_{\rm max}$)

/₀ (μΜ/min)

$$V_0 = V_{\text{max}} \frac{[S]}{[S] + K_M}$$

The substrate concentration at which V_o is half maximal is K_m

The Michaelis constant (K_m)

- > The lower the K_m of an enzyme towards its substrate, the higher the affinity
- When more than one substrate is involved? Each will have a unique K_m & V_{max}

K_m values have a wide range. Mostly between table 8-6

 $(10^{-1} \& 10^{-7} M)$

Enzyme	Substrate	К _m (mм)
Catalase	H ₂ O ₂	25
Hexokinase (brain)	ATP	0.4
	p-Glucose	0.05
	p-Fructose	1.5
Carbonic anhydrase	HCO ₃	26
Chymotrypsin	Glycyltyrosinylglycine	108
	N-Benzoyltyrosinamide	2.5
β-Galactosidase	p-Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

$$K_{M} \& K_{D}$$
[E], $K_{M} \& V_{max}$

 \succ K_D : dissociation constant, The actual measure of the affinity

$$> K_D = (k_{-1}/k_1)$$

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

When you increase the enzyme concentration, what will happen to $V_{max} \& K_m$?

$$V_{\text{max}} \& k_{\text{cat}}$$

For the enzymatic reaction

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$

Turnover Numbers (k _{cat}) of Some Enzymes			
Enzyme	Substrate	$k_{\rm cat}$ (s ⁻¹)	
Catalase	H_2O_2	40,000,000	
Carbonic anhydrase	HCO ₃	400,000	
Acetylcholinesterase	Acetylcholine	14,000	
β-Lactamase	Benzylpenicillin	2.000	

Fumarate

ATP

The maximal rate, V_{max} , is equal to the product of k_2 , also known as k_{cat} , and the total concentration of enzyme

RecA protein (an ATPase)

$$V_{\text{max}} = k_2 [E]_T$$

 $\succ k_{\text{cat}}$, the turnover number, is the concentration (or moles) of substrate molecules converted into product per unit time per concentration (or moles) of enzyme, or when fully saturated

$$k_{\text{cat}} = V_{\text{max}} / [E]_{\text{T}}$$

In other words, the maximal rate, V_{max} , reveals the turnover number of an enzyme if the total concentration of active sites $[E]_T$ is known

Example

➤ a 10⁻⁶ M solution of carbonic anhydrase catalyzes the formation of 0.6 M H₂CO₃ per second when it is fully saturated with substrate

✓ Hence,
$$k_{cat}$$
 is $6 \times 10^5 \text{ s}^{-1}$
✓ 10^4 min^{-1}

- \triangleright Each catalyzed reaction takes place in a time equal to 1/ k_2 , which is 1.7 μs for carbonic anhydrase
- The turnover numbers of most enzymes with their physiological substrates fall in the range from 1 to 10⁴ per second

Specificity & Efficiency

$$V = \frac{V_{\text{max}}[S]}{K_{\text{M}} + [S]} = \frac{k_{\text{cat}}[E_{\text{T}}][S]}{K_{\text{M}} + [S]} \qquad V = (k_{\text{cat}}/K_{\text{M}})[E][S]$$

- Specificity constant (k_{cat}/K_M): determines the relative rate of the reaction at low [S]
- $ightharpoonup k_{cat}/K_{M}$ (M⁻¹ min⁻¹) is indicative of:
 - ✓ Enzyme's substrate specificity: the higher the ratio, the higher the specificity
 - ✓ Enzyme's catalytic efficiency: the higher the ratio, the more efficient the enzyme

Table 6.2					
Turnover Numbers and Km for Some Typical Enzymes					
Enzyme	Function	k_{cat} = Turnover Number* K_{M}^{**}			
Catalase	Conversion of H_2O_2 to H_20 and O_2	4×10^7 25			
Carbonic Anhydrase	Hydration of CO ₂	1×10^6 12			
Acetylcholinesterase	Regenerates acetylcholine, an important substance in transmission of nerve impulses, from acetate and choline	1.4×10^4 9.5×10^{-2}	!		
Chymotrypsin	Proteolytic enzyme	1.9×10^2 6.6×10^{-1}			
Lysozyme	Degrades bacterial cell-wall polysaccharides	6×10^{-3}	i		

 $k_{\rm cat}$ values vary over a wide range $K_{\rm M}$ values also vary over a wide range $K_{\rm cat}/K_{\rm M}$, the range is narrower

Reaction rate (v); Enzyme activity; Specific activity; Turnover number

- Reaction rate; measures the <u>concentration</u> of substrate consumed (or product produced) <u>per unit time</u> (mol/{L.s} or M/s)
- Enzyme activity; measures the <u>number of moles</u> of substrate consumed (or product produced) <u>per unit time</u> (mol/s)
 - **✓** Enzyme activity = rate of reaction × reaction volume
- Specific activity; measures moles of substrate converted per unit time per unit mass of enzyme (mol/{s.g})
 - ✓ Specific activity = enzyme activity / actual mass of enzyme
 - ✓ This is useful in determining enzyme purity after purification
- Turnover number; measures <u>moles of substrate</u> converted <u>per unit</u> <u>time per moles of enzyme</u> (min⁻¹ or s⁻¹)
 - ✓ Turnover number = specific activity × molecular weight of enzyme

Sample calculations:

A solution contains initially 25.0×10^{-4} mol L⁻¹ of peptide substrate and 1.50 µg chymotrypsin, in 2.5 mL volume. After 10 minutes, 18.6×10^{-4} mol L⁻¹ of peptide substrate remain. Molar mass of chymotrypsin is 25,000 g mol⁻¹.

peptide substrate consumed

Rate of reaction

= 6.4 x 10⁻⁴ mol L⁻¹ in 10 minutes

 $= 6.4 \times 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1}$

Enzyme activity

(rate × volume)

 $= 6.4 \times 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1} \times 2.5 \times 10^{-3} \text{ L}$

 $= 1.6 \times 10^{-7} \text{ mol min}^{-1}$

Specific activity

(activity / mass)

= $1.6 \times 10^{-7} \text{ mol min}^{-1} / 1.50 \, \mu \text{g}$

= $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1}$

Turnover number

(sp. act. × molar mass)

= $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1} \times 25,000 \text{ g mol}^{-1} \times 10^{6} \mu\text{g g}^{-1}$

= 2.7 x 10³ min⁻¹ = 45 s⁻¹

Disadvantage of Michaelis-Menten equation & Lineweaver-Burk or double-reciprocal plot

- \triangleright Determining the $K_{\rm m}$ from hyperbolic plots is not accurate since a large amount of substrate is required in order to reach $V_{\rm max}$
- \triangleright This prevents the calculation of both V_{max} & K_m
- \triangleright Lineweaver-Burk plot: A plot of $1/v_0$ versus 1/[S] (double-reciprocal plot), yields a straight line with an y-intercept of $1/V_{max}$ and a slope of K_M/V_{max}

 \triangleright The intercept on the x-axis is -1/ $K_{\rm M}$

Example

• A biochemist obtains the following set of data for an enzyme that is known to follow Michaelis-Menten kinetics. Approximately, $V_{\rm max}$ of this

	enzyme	is	•••	&	K _m	is	?
--	--------	----	-----	---	----------------	----	---

A. 5000 & 69	9
--------------	---

- **B.** 699 & 5000
- C. 621 & 50
- D. 94 & 1
- E. 700 & 8

Substrate	Initial velocity		
Concentration			
(µM)	(µmol/min)		
1	49		
2	96		
8	349		
50	621		
100	676		
1000	698		
5000	699		

- You are working on the enzyme "Medicine" which has a molecular weight of 50,000 g/mol. You have used 10 μ g of the enzyme in an experiment and the results show that the enzyme converts 9.6 μ mol per min at 25°C. the turn-over number (k_{cat}) for the enzyme is:
 - A. 9.6 s⁻¹
- B. 48 s⁻¹

C. 800 s⁻¹

- D. 960 s⁻¹
- E. 1920 s⁻¹