Kinetics of enzymatic reactions ### **Kinetics** - Biochemical Kinetics: the science that studies rates of chemical reactions - An example is the reaction (A \rightarrow P), The velocity, v, or rate, of the reaction A \rightarrow P is the amount of P formed or the amount of A consumed per unit time, t. That is, $$v = rac{d[\mathrm{P}]}{dt}$$ or $v = rac{-d[\mathrm{A}]}{dt}$ ### Reaction Rate Law - The rate is a term of change over time - > The rate will be proportional to the conc. of the reactants - ➤ It is the mathematical relationship between reaction rate and concentration of reactant(s) - \triangleright For the reaction (A + B \rightarrow P), the rate law is Rate = $$\frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{\Delta t} = \frac{\Delta[P]}{\Delta t}$$ $v = \frac{-d[A]}{dt} = k[A]$ From this expression, the rate is proportional to the concentration of A, and k is the rate constant # The order of the reaction & the rate constant (k) A multistep reaction can go no faster than the slowest step $$v = k(A)^{n1}(B)^{n2}(C)^{n3}$$ - k is the rate constant: the higher the activation energy (energy barrier), the smaller the value of k - (n1+n2+n3) is the overall order of the reaction - Dimensions of k | Overall order | V= | Dimentions of k | |---------------|--------------|-----------------------------| | Zero | k | (conc.)(time) ⁻¹ | | First | <i>k</i> (A) | (time) ⁻¹ | ### Enzyme kinetics - > Enzymatic reactions may either have a simple behavior or complex (allosteric) behavior - Simple behavior of enzymes: as the concentration of the substrate rises, the velocity rises until it reaches a limit - Thus; enzyme-catalyzed reactions have hyperbolic (saturation) plots ### Enzyme kinetics - ➤ The maximal rate, V_{max}, is achieved when the catalytic sites on the enzyme are saturated with substrate - V_{max} reveals the turnover number of an enzyme - ➤ The number of substrate molecules converted into product by an enzyme molecule in a unit of time when the enzyme is fully saturated with substrate - At V_{max}, the reaction is in zero-order rate since the substrate has no influence on the rate of the reaction ## Expression of enzyme kinetic reactions "Steady State Assumption" Concentration $$E + S \rightleftharpoons ES \rightleftharpoons E + P$$ $$k_{-1} E \rightleftharpoons k_{-2}$$ $$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$ $$v = k_2 ES$$ $$\frac{dES}{dt} = k_1 E . S - k_{-1} ES - k_2 ES$$ $$0 = k_1 E \cdot S - k_{-1} ES - k_2 ES$$ $$E_t = E + ES$$ $$ES = \frac{E_t \cdot S}{(k_{-1} + k_2)/k_1 + S}$$ $$v = \frac{E_t k_2 S}{(k_{-1} + k_2)/k_1 + S}$$ $$v = \frac{Vmax S}{K_m + S}$$ ### The Michaelis constant (K_m) For a reaction: $$\mathsf{E} + \mathsf{S} \underset{k_1}{\overset{k_1}{\Longleftrightarrow}} \mathsf{ES} \xrightarrow{k_2} \mathsf{E} + \mathsf{P}$$ #### STEADY STATE APPROXIMATION $$\frac{d[ES]}{dt} = k_1[E][S] - \kappa_1[ES] - \kappa_2[ES] = 0 \text{ (approx.)}$$ $$\frac{[E][S]}{[ES]} = \frac{\kappa_1 + \kappa_2}{k_1} = K_M \quad Equation 1$$ \succ $K_{\rm m}$, called the Michaelis constant is $$K_{M} = \frac{k_{-1} + k_{2}}{k_{1}}$$ - \triangleright In other words, $K_{\rm m}$ is related to the rate of disso enzyme to the enzyme-substrate complex - K_m describes the affinity of enzyme for the substrate # Expression of enzyme kinetic reactions Michaelis-Menten equation - \triangleright A quantitative description of the relationship between the rate of an enzyme catalyzed reaction (V_0) & substrate concentration [S] - \checkmark The rate constant ($K_{\rm m}$) and maximal velocity ($V_{\rm max}$) /₀ (μΜ/min) $$V_0 = V_{\text{max}} \frac{[S]}{[S] + K_M}$$ The substrate concentration at which V_o is half maximal is K_m ### The Michaelis constant (K_m) - > The lower the K_m of an enzyme towards its substrate, the higher the affinity - When more than one substrate is involved? Each will have a unique K_m & V_{max} K_m values have a wide range. Mostly between table 8-6 $(10^{-1} \& 10^{-7} M)$ | Enzyme | Substrate | К _m (mм) | |-----------------------|-------------------------------|----------------------------| | Catalase | H ₂ O ₂ | 25 | | Hexokinase (brain) | ATP | 0.4 | | | p-Glucose | 0.05 | | | p-Fructose | 1.5 | | Carbonic anhydrase | HCO ₃ | 26 | | Chymotrypsin | Glycyltyrosinylglycine | 108 | | | N-Benzoyltyrosinamide | 2.5 | | β-Galactosidase | p-Lactose | 4.0 | | Threonine dehydratase | L-Threonine | 5.0 | $$K_{M} \& K_{D}$$ [E], $K_{M} \& V_{max}$ \succ K_D : dissociation constant, The actual measure of the affinity $$> K_D = (k_{-1}/k_1)$$ $$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$ When you increase the enzyme concentration, what will happen to $V_{max} \& K_m$? $$V_{\text{max}} \& k_{\text{cat}}$$ For the enzymatic reaction $$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$ | Turnover Numbers (k _{cat}) of Some Enzymes | | | | |--|------------------|----------------------------------|--| | Enzyme | Substrate | $k_{\rm cat}$ (s ⁻¹) | | | Catalase | H_2O_2 | 40,000,000 | | | Carbonic anhydrase | HCO ₃ | 400,000 | | | Acetylcholinesterase | Acetylcholine | 14,000 | | | β-Lactamase | Benzylpenicillin | 2.000 | | Fumarate **ATP** The maximal rate, V_{max} , is equal to the product of k_2 , also known as k_{cat} , and the total concentration of enzyme RecA protein (an ATPase) $$V_{\text{max}} = k_2 [E]_T$$ $\succ k_{\text{cat}}$, the turnover number, is the concentration (or moles) of substrate molecules converted into product per unit time per concentration (or moles) of enzyme, or when fully saturated $$k_{\text{cat}} = V_{\text{max}} / [E]_{\text{T}}$$ In other words, the maximal rate, V_{max} , reveals the turnover number of an enzyme if the total concentration of active sites $[E]_T$ is known ### Example ➤ a 10⁻⁶ M solution of carbonic anhydrase catalyzes the formation of 0.6 M H₂CO₃ per second when it is fully saturated with substrate ✓ Hence, $$k_{cat}$$ is $6 \times 10^5 \text{ s}^{-1}$ ✓ 10^4 min^{-1} - \triangleright Each catalyzed reaction takes place in a time equal to 1/ k_2 , which is 1.7 μs for carbonic anhydrase - The turnover numbers of most enzymes with their physiological substrates fall in the range from 1 to 10⁴ per second ### Specificity & Efficiency $$V = \frac{V_{\text{max}}[S]}{K_{\text{M}} + [S]} = \frac{k_{\text{cat}}[E_{\text{T}}][S]}{K_{\text{M}} + [S]} \qquad V = (k_{\text{cat}}/K_{\text{M}})[E][S]$$ - Specificity constant (k_{cat}/K_M): determines the relative rate of the reaction at low [S] - $ightharpoonup k_{cat}/K_{M}$ (M⁻¹ min⁻¹) is indicative of: - ✓ Enzyme's substrate specificity: the higher the ratio, the higher the specificity - ✓ Enzyme's catalytic efficiency: the higher the ratio, the more efficient the enzyme | Table 6.2 | | | | | | |--|---|---|---|--|--| | Turnover Numbers and Km for Some Typical Enzymes | | | | | | | Enzyme | Function | k_{cat} = Turnover Number* K_{M}^{**} | | | | | Catalase | Conversion of H_2O_2 to H_20 and O_2 | 4×10^7 25 | | | | | Carbonic Anhydrase | Hydration of CO ₂ | 1×10^6 12 | | | | | Acetylcholinesterase | Regenerates acetylcholine,
an important substance in
transmission of nerve
impulses, from acetate and
choline | 1.4×10^4 9.5×10^{-2} | ! | | | | Chymotrypsin | Proteolytic enzyme | 1.9×10^2 6.6×10^{-1} | | | | | Lysozyme | Degrades bacterial cell-wall
polysaccharides | 6×10^{-3} | i | | | $k_{\rm cat}$ values vary over a wide range $K_{\rm M}$ values also vary over a wide range $K_{\rm cat}/K_{\rm M}$, the range is narrower ## Reaction rate (v); Enzyme activity; Specific activity; Turnover number - Reaction rate; measures the <u>concentration</u> of substrate consumed (or product produced) <u>per unit time</u> (mol/{L.s} or M/s) - Enzyme activity; measures the <u>number of moles</u> of substrate consumed (or product produced) <u>per unit time</u> (mol/s) - **✓** Enzyme activity = rate of reaction × reaction volume - Specific activity; measures moles of substrate converted per unit time per unit mass of enzyme (mol/{s.g}) - ✓ Specific activity = enzyme activity / actual mass of enzyme - ✓ This is useful in determining enzyme purity after purification - Turnover number; measures <u>moles of substrate</u> converted <u>per unit</u> <u>time per moles of enzyme</u> (min⁻¹ or s⁻¹) - ✓ Turnover number = specific activity × molecular weight of enzyme #### Sample calculations: A solution contains initially 25.0×10^{-4} mol L⁻¹ of peptide substrate and 1.50 µg chymotrypsin, in 2.5 mL volume. After 10 minutes, 18.6×10^{-4} mol L⁻¹ of peptide substrate remain. Molar mass of chymotrypsin is 25,000 g mol⁻¹. peptide substrate consumed Rate of reaction = 6.4 x 10⁻⁴ mol L⁻¹ in 10 minutes $= 6.4 \times 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1}$ Enzyme activity (rate × volume) $= 6.4 \times 10^{-5} \text{ mol L}^{-1} \text{ min}^{-1} \times 2.5 \times 10^{-3} \text{ L}$ $= 1.6 \times 10^{-7} \text{ mol min}^{-1}$ Specific activity (activity / mass) = $1.6 \times 10^{-7} \text{ mol min}^{-1} / 1.50 \, \mu \text{g}$ = $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1}$ Turnover number (sp. act. × molar mass) = $1.1 \times 10^{-7} \text{ mol } \mu\text{g}^{-1} \text{ min}^{-1} \times 25,000 \text{ g mol}^{-1} \times 10^{6} \mu\text{g g}^{-1}$ = 2.7 x 10³ min⁻¹ = 45 s⁻¹ ## Disadvantage of Michaelis-Menten equation & Lineweaver-Burk or double-reciprocal plot - \triangleright Determining the $K_{\rm m}$ from hyperbolic plots is not accurate since a large amount of substrate is required in order to reach $V_{\rm max}$ - \triangleright This prevents the calculation of both V_{max} & K_m - \triangleright Lineweaver-Burk plot: A plot of $1/v_0$ versus 1/[S] (double-reciprocal plot), yields a straight line with an y-intercept of $1/V_{max}$ and a slope of K_M/V_{max} \triangleright The intercept on the x-axis is -1/ $K_{\rm M}$ ### Example • A biochemist obtains the following set of data for an enzyme that is known to follow Michaelis-Menten kinetics. Approximately, $V_{\rm max}$ of this | | enzyme | is | ••• | & | K _m | is | ? | |--|--------|----|-----|---|----------------|----|---| |--|--------|----|-----|---|----------------|----|---| | A. 5000 & 69 | 9 | |--------------|---| |--------------|---| - **B.** 699 & 5000 - C. 621 & 50 - D. 94 & 1 - E. 700 & 8 | Substrate | Initial
velocity | | | |---------------|---------------------|--|--| | Concentration | | | | | (µM) | (µmol/min) | | | | 1 | 49 | | | | 2 | 96 | | | | 8 | 349 | | | | 50 | 621 | | | | 100 | 676 | | | | 1000 | 698 | | | | 5000 | 699 | | | - You are working on the enzyme "Medicine" which has a molecular weight of 50,000 g/mol. You have used 10 μ g of the enzyme in an experiment and the results show that the enzyme converts 9.6 μ mol per min at 25°C. the turn-over number (k_{cat}) for the enzyme is: - A. 9.6 s⁻¹ - B. 48 s⁻¹ C. 800 s⁻¹ - D. 960 s⁻¹ - E. 1920 s⁻¹