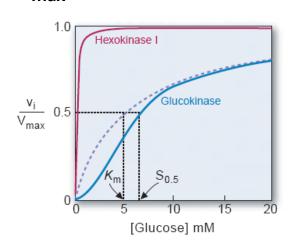

Enzymes Regulation

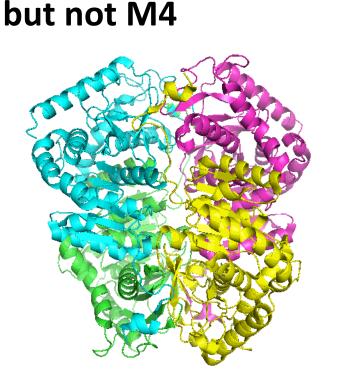

Modes of regulation

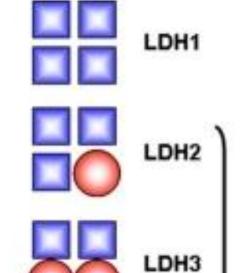
Isozymes (isoenzymes) The Differential K_M Value "Hexokinase"

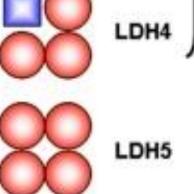
- What are isozymes? Same substrate & product, different gene, <u>different</u> localization, <u>different parameters</u> (K_m, V_{max}, k_{cat})
- Hexokinase found in RBCs & in liver
- Catalyzes the first step in glucose metabolism
- Hexokinase I (RBCs): K_M (glucose) ≈ 0.1 mM
- Hexokinase I V (glucokinase, liver, pancreas) ≈ 10 mM
- RBCs: when blood glucose falls below its normal fasting level (≈ 5 mM),
 RBCs could still phosphorylate glucose at rates near V_{max}
- Liver: rate of phosphorylation increases above fasting levels (after a highcarbohydrate meal)
 - High K_M of hepatic glucokinase promotes storage of glucose
 - Pancreas: works as a sensor

Lactate Dehydrogenase (LDH)

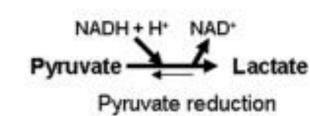
CH₃—C—COOH LDH CH—COOH
NADH NAD+

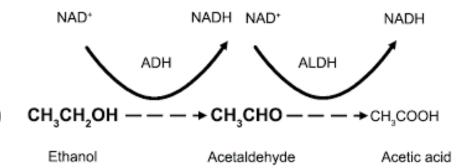

Pyruvate


Lactate


NADH+H*

Lactate oxidation


- Aerobic vs. anaerobic
- Km: H4 >> M4
- Inhibition: H4 inhibited



Intermediate activity

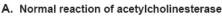
Aldehyde dehydrogenase (ALDH)

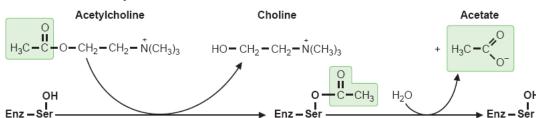
- Oxidation of acetaldehyde to acetate.
- Four tetrameric isozymes (I-IV)
- ALDH I (low Km; mitochondrial) and ALDH II (higher Km; cytosolic)
- ~50% of Japanese & Chinese are unable to produce ALDH I (not observed in Caucasian & Negroid populations)
 - Flushing response
 - Tachycardia

2. Inhbition

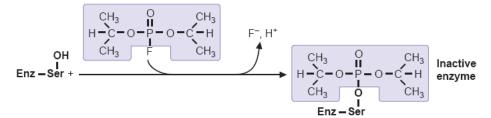
2.1 MECHANISM-BASED INHIBITORS

- Mechanism-based inhibitors mimic or participate in an intermediate step of the catalytic reaction
- The term includes:
- A. Covalent inhibitors
- B. Transition state analogs
- C. Heavy metals
- The kinetic effect of irreversible inhibitors is to decrease the concentration of active enzyme


2.1.A. Covalent Inhibitors


- CH₃O P S C C C C C₂H₅

 H₂C C C C C₂H₅
 - Malathion
- CH₃


Sarin

- Covalent or extremely tight bonds with active site amino acids
- Amino acids are targeted by drugs & toxins
- The lethal compound [DFP] is an organophosphorus compound that served as a prototype for:
 - The nerve gas sarin
 - The insecticides malathion & parathion
 - DFP also inhibits other enzymes that use serine (ex. serine proteases), but the inhibition is not as lethal

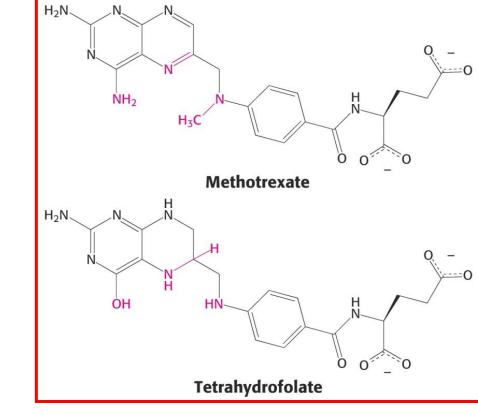
B. Reaction with organophosphorus inhibitors

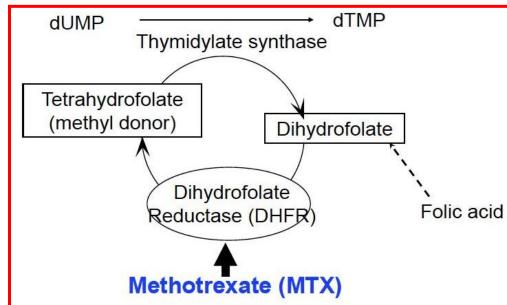
2.1.A. Covalent Inhibitors

- Aspirin (acetylsalicylic acid): covalent acetylation of an active site serine in the enzyme prostaglandin endoperoxide synthase (cyclooxygenase)
- Aspirin resembles a portion of the prostaglandin precursor that is a physiologic substrate for the enzyme

2.1.B. Transition-State Analogs & Compounds that Resemble Intermediate Stages of the Reaction

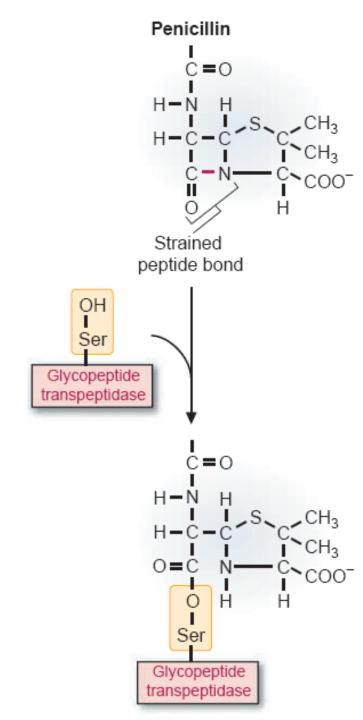
 Transition-state analogs: extremely potent inhibitors (bind more tightly)


 Drugs cannot be designed that precisely mimic the transition state! (highly unstable structure)


Substrate analogs: bind more tightly than substrates

Known as suicide inhibitors

Methotrexate


- Synthetic inhibitor
- Anticancerous
- Analog of tetrahydrofolate
- Binds to enzyme a 1000-fold more tightly
- Inhibits nucleotide base synthesis

2.1.B.1 PENICILLIN

- A transition-state analog to glycopeptidyl transferase or transpeptidase
- Required by bacteria for synthesis of the cell wall
- The reaction is favored by the strong resemblance between the peptide bond in the β-lactam ring of penicillin & the transition-state complex of the natural transpeptidation reaction
- Inhibitors that undergo partial reaction to form irreversible inhibitors in the active site are sometimes termed suicide inhibitors

2.1.B.2 ALLOPURINOL

- A drug used to treat gout
- Decreases urate production by inhibiting xanthine oxidase
- The enzyme commits suicide by converting the drug to a transition-state analog
- The enzyme contains a molybdenum-sulfide (Mo-S) complex that binds the substrates and transfers the electrons required for the oxidation reactions
- Xanthine oxidase oxidizes the drug allopurinol to oxypurinol, a compound that binds very tightly to a molybdenum-sulfide complex in the active site

Alloxanthine (oxypurinol)

xanthine oxidase

Allopurinol

2.1.C. Heavy Metals

- Tight binding of a metal to a functional group in an enzyme
- Mercury (Hg), lead (Pb), aluminum (Al), or iron (Fe)
- Relatively nonspecific for the enzymes they inhibit, particularly if the metal is associated with high-dose toxicity
- Mercury: binds to so many enzymes, often at reactive sulfhydryl groups in the active site
 - It has been difficult to determine which of the inhibited enzymes is responsible for mercury toxicity
- Lead provides an example of a metal that inhibits through replacing the normal functional metal in an enzyme, such as calcium, iron, or zinc
 - Its developmental & neurologic toxicity may be caused by its ability to replace Ca⁺² in several regulatory proteins that are important in the central nervous system and other tissues