
Getting to Know SPSS 

 
Creating a New File in SPSS 
Creating a new file in SPSS is an essential, basic step before you can get fully 

started using the more complex operations available with this software. Please 

follow the guide below on how to create a new file in SPSS Statistics 18.0. 

1. There are two ways to create a new file in SPSS - either when you start 

SPSS or when SPSS is already open. When you start SPSS you will be 

presented with the following screen:  

 

2. Make sure that is selected as show below:  



 

3. Click the button.  

4. Otherwise, if SPSS is already open then click File > New > Data as 

shown below:  

 

5. Both these options will lead to the following screen:  



 

Working with Variables in SPSS 
In SPSS, you need to define your variables, which occur in the Variables View. To 

access the Variable View you need to click the Variables View tab as shown 

below: 

 
. 

Here you can adjust the properties of each of your variables under 10 categories 

- Name, Type, Width, Decimals, Label, Values, Missing, Columns, Align and 

Measure. 

To change the name of a column (variable) in the Data View sheet, 

click in the appropriate cell and type in the new name. The names in this column 

must not start with a number. They also cannot contain special characters such 

as / * $, space etc. You will be given an error message if your name is in illegal 

format. 



To define the type of data contained in the column (e.g. characters, 

strings, numbers etc.) click on the appropriate row in the Type column. 

You can alter the number of digits displayed in the column by clicking in 

the appropriate Width cell. 

You can alter the number of digits after the decimal place by clicking in 

the appropriate Width cell. 

Click on the appropriate cell in the Labels column to give a long 

description which will help you to understand the variable you are referring to. 

You can give a text label for category codes by clicking on the 

appropriate cell in the column values. Default is None. 

First click on the "None" cell box and then on the  button as show in the 

diagram below: 

 

Enter the numeric code value 1 in the text box for Value:. This value corresponds 

to the group representing "males", so enter "males" in the Label: box. 

 

Click on the button. 

Repeat the above entering "2" in the Value: box and "female" in the Label: box 

and click on the button. 



You will be presented with the following screen: 

 
. 

Click on the button. 

To define different type of missing vale code click on the appropriate 

cell in the Missing column. 

The width of column in the data view sheet can be altered by clicking in 

the appropriate Column cell. 

To align the text or numbers in Data View, click in the appropriate 

Align cell. 

To label the scale of data, click in the appropriate Measure cell. In 

our example, we need to select the "Nominal" value. 

 

You can now see the results of your labeling by clicking the button in the 

Data Editor View as shown below: 



 

Entering Data in SPSS 
The "one person, one row" Rule 

SPSS sets out its data in a spreadsheet-like manner. The principle behind 

entering data in almost all cases in SPSS is to enter each unique case on a new 

row. A case is the "object" which you are measuring in someway. Usually, a case 

is an individual, but it can also be a commercial product or a biological cell or 

something else entirely. For the purposes of this explanation, we shall assume 

that a case is an individual. Therefore, when entering data into SPSS you must 

put one person's data on one row only. If you find that you have an individual's 

data on more than one row then you have made a mistake. Equally, if a row 

contains more than one person's data, then you have also made a mistake. 

We shall now look at the three most common tasks you face when entering data 

into SPSS plus two more advanced setups: 

 Entering variables, e.g. height, weight 

 Defining separate groups (between-subject factors), e.g. gender, level of 

education 

 Entering repeated measures (within-subjects factors), e.g. time course 

 Multiple separate groups, e.g. gender and level of education 

 Separate groups and repeated measures, e.g. gender and time course. 

Entering Variables 

If you do not have repeated measures then SPSS treats each column as a 

separate variable. Thus, each variable goes in a separate column. For example, if 

we had measured the height and weight of a group of individuals then the data in 

SPSS would look like the following: 
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The Subject column has been added so that it is clear that each individual is 

placed on a separate row; however, SPSS does not need you to enter this column 

and it is mostly for you to be able to better visualize your data. So, even if we 

ignored the Subject column, we can see that one individual was 1.55 m tall and 

weighed 56 kg, looking at the Height and Weight columns, respectively. How to 

label variable columns is in our Working with Variables guide. To add more 

variables, simply add more columns - one column per variable. The only variation 

to this is discussed later in this guide when we have to enter repeated measures. 

Defining Separate Groups 

Separate groups are more commonly called between-subjects factors or 

independent groups. They are groups where the individuals in each group are 

unique, i.e. no person is in more than one group. In this sense, you could call the 

groups "mutually-exclusive". A common example is when differentiating between 

genders. You want to label some of your individuals as female and others as 

male. To identify which subjects were males and which were females, you need to 

create a "grouping variable" in SPSS. This is a separate column which includes 

information on which group a subject belongs to. We do this by labeling our 

groups numerically. So, for example, we label males as "1" and females as "2". 

By using the value attribute we can label these numbers as representing males 

and females, respectively. An example is shown below: 
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Looking at the columns on the left we can see that we have created a "grouping 

variable" called Gender that has two categories - "1" and "2". Because we 

labelled the numbers using the value attribute we can use the Value Label Button 

to switch to the text version of the "grouping variable" categories. In this 

example, we can see that "1" and "2" are replaced by "Male" and "Female", 

respectively. How to do this is explained in our guide on Working with Variables. 

You do not need to add text labels – SPSS will work fine without them – but it can 

provide extra clarity when analysing your data (especially as text labels are often 

used in the output instead of the numbers – this helps greatly). We can see in 

this example that the first three subjects were males and the last four subjects 

were females. What if you have more than two categories of your "grouping 

variable"? Simple, just add more numbers with, we recommend, corresponding 

text labels. 

Entering Repeated Measures 

Repeated measures, also called within-subject factors or related groups, are 

variables that are measured on more than one occasion. This can occur when you 

have measured the same subject for the same variable at more than one time 

point or under more than one condition. For example, you measured body weight 

at the beginning and end of a weight-loss programme. To enter this into SPSS 

you must ignore the "one-variable-one-column" rule and put each time point or 

condition in a new column as follows: 
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Here we have labeled their weight at the beginning of the weight-loss programme 

as "Weight_Pre" and their weight after the weight-loss programme as 

"Weight_Post". It does not matter what you call these "related" columns (you 

could have called them weight1 and weight2, for example) as long the columns 

make sense to you. If you have a lot of time points, and/or conditions, then 

labeling the variables logically is important as otherwise it can become very 

confusing determining which variable is which. This is important as SPSS itself 

cannot tell the difference between columns that contain different variables and 

columns that contain a repeated variable and, therefore, cannot help you. 

Multiple Separating Groups 

Sometimes, such as when running a two-way ANOVA or when entering in your 

whole study data, you need to separate your subjects twice - i.e on two separate 

variables. For example, you need to separate subjects by their gender 

(male/female) and their physical activity level (sedentary/active). This will require 

two columns that act as "grouping variables" as shown below: 



 

Here we can see that, for example, Subject 1 was male and sedentary and that 

Subject 7 was female and active. Notice that we are using the text labels as 

described earlier in this guide for added clarity. 

Mixing Separate Groups and Repeated Measures 

Sometimes, we have separated subjects into groups and then measured them 

repeatedly on the same dependent variable. Such data might be analysed using a 

mixed ANOVA. If we had males and females undertake a weight-loss programme 

and we weighted them pre- and post-intervention then we would have the 

following setup in SPSS: 

 
. 



To generate this type of setup simply used the rules you have learnt in this guide 

under the Defining Separate Groups and Entering Repeated Measures sections.  

Defining Separate Groups 

Separate groups are more commonly called between-subjects factors or 

independent groups. They are groups where the individuals in each group are 

unique, i.e. no person is in more than one group. In this sense, you could call the 

groups "mutually-exclusive". A common example is when differentiating between 

genders. You want to label some of your individuals as female and others as 

male. To identify which subjects were males and which were females, you need to 

create a "grouping variable" in SPSS. This is a separate column which includes 

information on which group a subject belongs to. We do this by labelling our 

groups numerically. So, for example, we label males as "1" and females as "2". 

By using the value attribute we can label these numbers as representing males 

and females, respectively. An example is shown below: 

 

Looking at the columns on the left we can see that we have created a "grouping 

variable" called Gender that has two categories - "1" and "2". Because we 

labelled the numbers using the value attribute we can use the Value Label Button 

to switch to the text version of the "grouping variable" categories. In this 

example, we can see that "1" and "2" are replaced by "Male" and "Female", 

respectively. How to do this is explained in our guide on Working with Variables. 

You do not need to add text labels – SPSS will work fine without them – but it can 

provide extra clarity when analysing your data (especially as text labels are often 

used in the output instead of the numbers – this helps greatly). We can see in 

this example that the first three subjects were males and the last four subjects 

were females. What if you have more than two categories of your "grouping 

variable"? Simple, just add more numbers with, we recommend, corresponding 

text labels. 

Entering Repeated Measures 
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Repeated measures, also called within-subject factors or related groups, are 

variables that are measured on more than one occasion. This can occur when you 

have measured the same subject for the same variable at more than one time 

point or under more than one condition. For example, you measured body weight 

at the beginning and end of a weight-loss programme. To enter this into SPSS 

you must ignore the "one-variable-one-column" rule and put each time point or 

condition in a new column as follows: 

 

Here we have labelled their weight at the beginning of the weight-loss 

programme as "Weight_Pre" and their weight after the weight-loss programme 

as "Weight_Post". It does not matter what you call these "related" columns 

(you could have called them weight1 and weight2, for example) as long the 

columns make sense to you. If you have a lot of time points, and/or conditions, 

then labelling the variables logically is important as otherwise it can become very 

confusing determining which variable is which. This is important as SPSS itself 

cannot tell the difference between columns that contain different variables and 

columns that contain a repeated variable and, therefore, cannot help you. 

Multiple Separating Groups 

Sometimes, such as when running a two-way ANOVA or when entering in your 

whole study data, you need to separate your subjects twice - i.e on two separate 

variables. For example, you need to separate subjects by their gender 

(male/female) and their physical activity level (sedentary/active). This will require 

two columns that act as "grouping variables" as shown below: 



 

Here we can see that, for example, Subject 1 was male and sedentary and that 

Subject 7 was female and active. Notice that we are using the text labels as 

described earlier in this guide for added clarity. 

Mixing Separate Groups and Repeated Measures 

Sometimes, we have separated subjects into groups and then measured them 

repeatedly on the same dependent variable. Such data might be analyzed using a 

mixed ANOVA. If we had males and females undertake a weight-loss programme 

and we weighted them pre- and post-intervention then we would have the 

following setup in SPSS: 

 

To generate this type of setup simply used the rules you have learnt in this guide 

under the Defining Separate Groups and Entering Repeated Measures sections.  
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Entering Repeated Measures 

Repeated measures, also called within-subject factors or related groups, are 

variables that are measured on more than one occasion. This can occur when you 

have measured the same subject for the same variable at more than one time 

point or under more than one condition. For example, you measured body weight 

at the beginning and end of a weight-loss programme. To enter this into SPSS 

you must ignore the "one-variable-one-column" rule and put each time point or 

condition in a new column as follows: 

 

Here we have labelled their weight at the beginning of the weight-loss 

programme as "Weight_Pre" and their weight after the weight-loss programme 

as "Weight_Post". It does not matter what you call these "related" columns 

(you could have called them weight1 and weight2, for example) as long the 

columns make sense to you. If you have a lot of time points, and/or conditions, 

then labelling the variables logically is important as otherwise it can become very 

confusing determining which variable is which. This is important as SPSS itself 

cannot tell the difference between columns that contain different variables and 

columns that contain a repeated variable and, therefore, cannot help you. 

Multiple Separating Groups 

Sometimes, such as when running a two-way ANOVA or when entering in your 

whole study data, you need to separate your subjects twice - i.e on two separate 

variables. For example, you need to separate subjects by their gender 

(male/female) and their physical activity level (sedentary/active). This will require 

two columns that act as "grouping variables" as shown below: 



 

Here we can see that, for example, Subject 1 was male and sedentary and that 

Subject 7 was female and active. Notice that we are using the text labels as 

described earlier in this guide for added clarity. 

Mixing Separate Groups and Repeated Measures 

Sometimes, we have separated subjects into groups and then measured them 

repeatedly on the same dependent variable. Such data might be analysed using a 

mixed ANOVA. If we had males and females undertake a weight-loss programme 

and we weighted them pre- and post-intervention then we would have the 

following setup in SPSS: 

 

To generate this type of setup simply used the rules you have learnt in this guide 

under the Defining Separate Groups and Entering Repeated Measures sections. 1  
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Transforming Data in SPSS 
8  

In this guide we will enter some data and then perform a transformation of the 

data. Transforming data is performed for a whole host of different reasons but 

one of the most common is to apply a transformation to data that is not normally 

distributed so that the new, transformed data is normally distributed. 

Transforming a non-normal distribution into a normal distribution is performed in 

a number of different ways depending on the original distribution of data but a 

common technique is to take the log of the data. In this example we will show 

you how SPSS allows you to do this. 

There are an infinite possible ways to transform data, although there are some 

approaches that are much more common than others. We will add extra 

examples of transforming data in the near future. 

Data to Transform 

36 32 45 41 29 22 18 36 10 40 

1. Your data should end up looking like the following:  

Remember that each individual's results go on a separate line (row) in 

SPSS. 
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2. Rename the variable "Data" instead of the default "VAR00001". You can 

name it something else if you wish.  

3. Click on Transform > Compute Variable... in the top menu.  

 

4. You need to first select the function you would like to use. To do this click 

"All" in the "Function group:" box then scroll down in the "Functions and 

Special Variables:" box and click "Lg10" to select it.  

Transfer the Lg10 function into the "Numeric Expression:" box by pressing 

the  button. 

Click the Data variable in the lefthand box and then click the  button 

which will result in the expression you see in the "Numeric Expression:" 

box below. 

All to do now is to give this new variable a name. We have called the new 

variable "TrData". Type this name into the "Target Variable:" box in the 

top lefthand corner. 



 

 

5. Click on the button.  

6. You will be presented with the SPSS Data Editor which will now show the 

log transformed data under the new variable name "TrData" that you 

defined.  

Recoding Variables in SPSS 
The instructions below will show you how to recode variables in SPSS 14.0. You 

can use recoding to produce different values or codes for a variable. Recoding can 

be done in one of two ways: 

 Recoding into the same variable 

 Recoding into a different variable 

In this guide we will concentrate on recoding into a different variable for which 

there are 3 main types of recoding: 

 Recode single values 



 Recode a given range of values 

 Recode data into two categories 

We will use an example of each type in order to demonstrate how to recode 

variables in SPSS. 

Recode single values 

Example: The data given below represents runs scored by 5 batsmen in a 

national-level match. Recode the data so that the batsmen are rank ordered by 

their number of runs, with the batsman with the highest runs given a code of "1" 

and the batsman with the lowest runs given a "5". 

Number of runs by batsmen 

Batsmen 1 2 3 4 5 

Runs 86 120 56 10 18 

1. Enter the data in the SPSS Data Editor and name the variable "Runs".  

Remember that each individual's results go on a separate line (row) in 

SPSS. 

 

2. Click on Transform > Recode Into Different Variables... in the top 

menu.  



 

3. You need to highlight the "Runs" variable in the left-hand box by clicking 

on it and then click the button to move it across to the "Numeric 

Variable -> Output Variable:" box.  

 

4. In the Output Variable grouping show below, give the new variable you 

are about to create a name and label. In this example, we have named the 

new variable "Ranked-Runs" and the label as "Ranked Runs" (see the 

).  



 

5. Click the button.  

6. You should now see that the "Numeric Variable -> Output Variable:" box 

has now changed to reflect these changes (see the ).  

 

7. Click the button.  

8. Enter the first score (120) into the "Old Value" box and set the new code 

of "1" into the "New Value". 

9. Click the button. 



10. Repeat for all other values such that you are presented with the following 

screen:  

 

11. Click the button.  

12. You will have returned to the previous screen and will now have to click 

the button. This will take you to the Data View Editor which will now 

show that you have created a new variable that is based on recoding your 

existing variable:  
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Recoding Variables in SPSS (cont...) 
 

Recode a given range 

Example: The data given below represents the scores of 10 students in a final 

examination. Recode the data giving code "1" to scores between 75 - 100, code 2 

to scores between 61 - 75, code 3 to scores between 41 - 60 and code 4 to 

scores between 0 - 40. 

Final examination scores of 10 students 

Scores 58 86 74 70 79 60 35 42 55 91 

1. Enter the data in the SPSS Data Editor and name the variable "Scores".  

Remember that each individual's results go on a separate line (row) in 

SPSS. 

 

2. Click on Transform > Recode Into Different Variable... in the top 

menu. 

3. Transfer the variable you want to recode by selected it and pressing the 

button and give the new variable a name and label. In this example, we 

have given the new variable a name of "NScores" and label of "New 

Scores" as shown below: 



 

4. Click on the button. 

5. Click on the button. 

6. Enter the first range of "75 - 100" into the "Old Value" box and set the 

new code to "1" into the "New Value" box as shown below:  

 

7. Click on the button. 



8. Repeat for all other values such that you are presented with the following 

screen:  

 

9. Click the button. 

10. You will have returned to the previous screen and will now have to click 

the button. This will take you to the Data View Editor which will now 

show that you have created a new variable that is based on recoding your 

existing variable:  



 

Recoding Variables in SPSS (cont...) 
Recoding data into two categories 

Example: The data given below represents a satisfaction rating out of 10 for a 

new service offered by a company. The company would like to code all those who 

responded by giving ratings above 5 a "Satisfactory" code and those below 5 a 

"Dissatisfactory" code. 

Satisfaction scores for a new service 

Scores 3 6 8 9 7 2 10 6 4 8 9 3 

1. Enter the data in the SPSS Data Editor and name the variable "Ratings".  

Remember that each individual's results go on a separate line (row) in 

SPSS. 



 

2. Click on Transform > Recode Into Different Variable... in the top 

menu.  

3. Transfer the variable you want to recode by selected it and pressing the 

button and give the new variable a name and label. In this example, we 

have given the new variable a name of "NRatings" and label of "New 

Ratings" as shown below:  

 



4. Click the button. 

5. Click the button. 

6. Enter the value of "5" into the "Range, LOWEST through value:" box and 

set the new code to "1" into the "New Value" box. Click the "Output 

variables are strings" checkbox so that it will except values that are not 

numbers. You need to increase the "Width:" from 8 to 16 also, so that the 

string labels are not truncated.  

 

7. Click the button. 

8. Enter the value of "6" into the "Range, value through HIGHEST:" box and 

set the new code to "1" into the "New Value" box.  



 

9. Click the button. 

10. Click the button. 

11. You will have returned to the previous screen and will now have to click 

the button. This will take you to the Data View Editor which will now 

show that you have created a new variable that is based on recoding your 

existing variable:  



 

Recoding Variables in SPSS (cont...) 
Recoding data into two categories 

Example: The data given below represents a satisfaction rating out of 10 for a 

new service offered by a company. The company would like to code all those who 

responded by giving ratings above 5 a "Satisfactory" code and those below 5 a 

"Dissatisfactory" code. 

Satisfaction scores for a new service 

Scores 3 6 8 9 7 2 10 6 4 8 9 3 

1. Enter the data in the SPSS Data Editor and name the variable "Ratings".  

Remember that each individual's results go on a separate line (row) in 

SPSS. 



 

2. Click on Transform > Recode Into Different Variable... in the top 

menu.  

3. Transfer the variable you want to recode by selected it and pressing the 

button and give the new variable a name and label. In this example, we 

have given the new variable a name of "NRatings" and label of "New 

Ratings" as shown below:  

 



4. Click the button. 

5. Click the button. 

6. Enter the value of "5" into the "Range, LOWEST through value:" box and 

set the new code to "1" into the "New Value" box. Click the "Output 

variables are strings" checkbox so that it will except values that are not 

numbers. You need to increase the "Width:" from 8 to 16 also, so that the 

string labels are not truncated.  

 

7. Click the button. 

8. Enter the value of "6" into the "Range, value through HIGHEST:" box and 

set the new code to "1" into the "New Value" box.  



 

9. Click the button. 

10. Click the button. 

11. You will have returned to the previous screen and will now have to click 

the button. This will take you to the Data View Editor which will now 

show that you have created a new variable that is based on recoding your 

existing variable:  



 

Ranking Data in SPSS 
Ranking is used to recode the data into their rank ordering from smallest to 

largest or largest to smallest. We will demonstrate this by entering in some data 

and ranking it in SPSS. 

Data to Rank 

87 26 54 39 67 12 28 98 54 68 23 64 28 43 77 

1. Your data should end up looking like the following (we have named the 

variable "Data"):  

Remember that each individual's results go on a separate line (row) in 

SPSS. 



 

2. Click on Transform > Rank Cases... in the top menu.  

 

. 

3. Click on the Data variable in the lefthand box and click the button to 

move it to the "Variable(s):" box.  

Uncheck the "Display summary tables" checkbox. 

If you wish to have the largest value have a rank of "1" then select the 

radio box "Largest value" from the "Assign Rank 1 to" box. We will stick 

with the default in this example, which is "Smallest value". 



 

4. Click on the button.  

5. You will be presented with the SPSS Data Editor which will now show the 

ranked data under a new variable name. This new variable name will have 

the same variable name as the old name but with the addition of the letter 

"R" at the beginning. Hence, in this case, the ranked data variable is called 

"RData".  



 

Graphs & Charts 

 

Creating a Bar Chart using SPSS 
Objectives 

A bar chart is helpful in graphically describing (visualizing) your data; it will often 

be used in addition to inferential statistics (see our Descriptive and Inferential 

Statistics guide). A bar chart can be appropriate if you are running an 

Independent T-Test or Dependent T-Test. The example we will use is based on 

the data from our Independent T-Test guide. 

Test Procedure in SPSS 

1. Click Graphs > Chart Builder... on the top menu as shown below:  
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2. You will be presented with the following screen:  

 



3. Under the Gallery Tab ( ) select the Bar option and the simple bar 

chart icon (top-left icon). Drag-and-drop this icon into the Chart Preview 

Area.  

 

4. You will be presented with the following dialog boxes: Chart Builder and 

Element Properties. As you can see, the Chart Preview Area has been 

populated with a template of a simple bar chart. 

 Creating a Bar Chart using SPSS (cont...) 

5. Transfer the independent variable, Treatment, into the "X-Axis?" box and 

the dependent (outcome) variable, Cholesterol Concentration, into the "Y-



Axis?" box within the Preview Chart Area by drag-and-dropping the 

variables from the "Variables:" box.  

 

6. Ideally, we want to be able to show a measure of the spread of the data. 

In this case, we wish to have error bars that represent ± 1 standard 

deviations. To do this we tick the "Dispay error bars" checkbox and then, 

under the "Error Bars Represent" area we check the radio box entitled 

"Standard deviation, Multiplier:" and enter "1". 



 

Click the button. 

7. You will be presented with the following screen (showing the error bars 

added in the "Chart Preview Area"):  



 

8. We do not need to do anything in the following screen, in this example. 

However, it does present some options which you might find useful. You 

can use the and to rearrange the order of the categories and the 

button to exclude a category. If you make a mistake and exclude a 

variable you later want to include then you can simply click the button 

in the "Excluded:" area.  



 

If you make any changes remember to click the button. 

9. We want to change the y-axis label so that we can remove the "mean" 

text and add in some units of measurement. We do this by selecting "Y-

Axis (Bar1)" in the "Edit Properties of:" area and then change the "Axis 

Label:" as below: 



 

Click the button. 

10. Click the button. 

Output 

You will be presented with the following: 



 

Creating a Bar Chart using SPSS 
 

Objectives 

A clustered bar chart is helpful in graphically describing (visualizing) your data; it 

will often be used in addition to inferential statistics (see our guide on Descriptive 

and Inferential Statistics). A clustered bar chart can be appropriate if you are 

running a two-way ANOVA. 

Test Procedure in SPSS 

1. Click Graphs > Chart Builder... on the top menu as shown below:  
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2. You will be presented with the following screen:  

 

3. Under the Gallery Tab ( ) select the Bar option and the clustered 

bar chart icon (top row, second from left). Drag-and-drop this icon into 

the Chart Preview Area (as shown below).  



 

4. You will be presented with the following dialog boxes: Chart Builder and 

Element Properties. As you can see, the Chart Preview Area has been 

populated with a template of a clustered bar chart. 



 

5. Transfer the independent variable "Edu_Level" into the "X-Axis?" box, the 

other independent variable, "Gender", into the "Cluster on X: set color" 

(top-right corner of the Chart Preview Area) and the dependent variable 

"Int_Politics" into the "Y-Axis?" box. 



 

Creating a Bar Chart using SPSS (cont...) 
  

6. Ideally, we want to be able to show a measure of the spread of the data. 

In this case, we wish to have error bars that represent +/- 1 standard 

deviations. To do this we tick the "Dispay error bars" checkbox and then, 

under the "Error Bars Represent" area we check the radio box entitled 

"Standard deviation, Multiplier:" and enter "1".  



 

Click the button. 

7. We do not need to do anything in the following screen, in this example. 

However, it does present some options which you might find useful. You 

can use the and button to rearrange the order of the categories and 

the button to exclude a category. If you make a mistake and exclude a 

variable you later want to include then you can simply click the button 

in the "Excluded:" area.  



 

If you make any changes remember to click the button. 

8. We want to change the y-axis label so that we can remove the "mean" 

text and make the title more meaningful. We do this by selecting "Y-Axis1 

(Bar1)" in the "Edit Properties of:" area and then change the "Axis 

Label:" as below:  



 

Click the button. 

9. We do not need to do anything in the following screen, in this example. 

However, it does present some options which you might find useful. You 

can use the and button to rearrange the order of the categories and 

the button to exclude a category. If you make a mistake and exclude a 

variable you later want to include then you can simply click the button 

in the "Excluded:" area.  



 

If you make any changes remember to click the button. 

10. Click the button. 

Output 

You will be presented with the following output: 



 

A Simple Scatterplot using SPSS 
7  

Objectives 

A scatterplot can be used to detemine whether a relationship is linear, detect 

outliers and graphically present a relationship. Determining whether a 

relationship is linear is an important assumption of correlation and simple 

regression. The example presented here is the same as in our guide on simple 

regression. 

Procedure 

1. Click Graphs > Chart Builder... on the top menu as shown below:  

 

2. You will be presented with the following screen:  
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3. Under the Gallery Tab ( ) select the Scatter/Dot option and the 

simple scatterplot icon (top-left icon).  Drag-and-drop this icon into the 

Chart Preview Area (as shown by the in the diagram below). 



 

4. You will be presented with the following dialog boxes: Chart Builder and 

Element Properties. As you can see, the Chart Preview Area has been 

populated with a template of a simple scatterplot.  



 

5. Transfer the independent (predictor) variable, Income, into the "X-Axis?" 

box and the dependent (outcome) variable into the "Y-Axis?" box within 

the Preview Chart Area by drag-and-dropping the variables from the 

"Variables:" box.  



 

6. If you wish to change the axis labels then select "X-Axis1 (Point1)" 

and/or "Y-Axis1 (Point1)" in the Element Properties dialog box and 

type in the new axis title.  Below we demonstrate changing the X-Axis 

label from "Income" to "Total Income (US Dollars)". Remember to click the 

button after each label change. Repeat with the Y-Axis by changing 

the label from "Price" to "Car Purchase Price (US Dollars)" and, again, click 

the button. 



 

7. Click the  button.  

Output 

You will be presented with the following output: 



 

 



 

5. Transfer the independent variable, Treatment, into the "X-Axis?" box and 

the dependent (outcome) variable, Cholesterol Concentration, into the "Y-

Axis?" box within the Preview Chart Area by drag-and-dropping the 

variables from the "Variables:" box.  



 

Checking Assumptions 

Testing for Normality using SPSS 
Introduction 

An assessment of the normality of data is a prerequisite for many statistical tests 

as normal data is an underlying assumption in parametric testing. There are two 

main methods of assessing normality - graphically and numerically. 

This guide will help you to determine whether your data is normal and, therefore, 

that this assumption is met in your data for statistical tests. The approaches can 

be divided into two main themes - relying on statistical tests or visual inspection. 

Statistical tests have the advantage of making an objective judgement of 

normality but are disadvantaged by sometimes not being sensitive enough at low 



sample sizes or overly sensitive to large sample sizes. As such, some statisticians 

prefer to use their experience to make a subjective judgement about the data 

from plots/graphs. Graphical interpretation has the advantage of allowing good 

judgement to assess normality in situations when numerical tests might be over 

or under sensitive but graphical methods do lack objectivity. If you do not have a 

great deal of experience interpreting normality graphically then it is probably best 

to rely on the numerical methods. 

If you would like to see an example of how to test for normality in SPSS as part 

of a complete statistical analysis, you can see this in action as part of our 

enhanced Independent-samples t-test in SPSS guide. To go straight to the 

relevant section, click here. This is a free, complete example of an enhanced 

guide in our Premium section. You can check out our low prices for access to all 

the enhanced content in our Premium section here. 

Methods of assessing normality 

SPSS allows you to test all of these procedures within Explore... command. The 

Explore... command can be used in isolation if you are testing normality in one 

group or splitting your dataset into one or more groups. For example, if you have 

a group of participants and you need to know if their height is normally 

distributed then everything can be done within the Explore... command. If you 

split your group into males and females (i.e. you have a categorical independent 

variable) then you can test for normality of height within both the male group and 

the female group using just the Explore... command. This applies even if you 

have more than two groups. However, if you have 2 or more categorical, 

independent variables then the Explore... command on its own is not enough 

and you will have to use the Split File... command also. 

Procedure for none or one grouping variable 

The following example comes from our guide on how to perform a one-way 

ANOVA in SPSS. 

1. Click Analyze > Descriptive Statistics > Explore... on the top menu as 

shown below:  

 

2. You will be presented with the following screen:  
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3. Transfer the variable that needs to be tested for normality into the 

"Dependent List:" box by either drag-and-dropping or using the button. 

In this example, we transfer the "Time" variable into the "Dependent List:" 

box. You will then be presented with the following screen:  

 

4.  [Optional] If you need to establish if your variable is normally distributed 

for each level of your independent variable then you need to add your 

independent variable to the "Factor List:" box by either drag-and-dropping 

or using the button. In this example, we transfer the "Course" variable 

into the "Factor List:" box. You will be presented with the following screen:  



 

5. Click the button. You will be presented with the following screen:  

 

Leave the above options unchanged and click the button. 

6. Click the button. Change the options so that you are presented 

with the following screen:  



 

Click the button. 

7. Click the button. 

Output 

SPSS outputs many table and graphs with this procedure. One of the reasons for 

this is that the Explore... command is not used solely for the testing of normality 

but in describing data in many different ways. When testing for normality, we are 

mainly interested in the Tests of Normality table and the Normal Q-Q Plots, 

our numerical and graphical methods to test for the normality of data, 

respectively. 

Shapiro-Wilk Test of Normality 

 

The above table presents the results from two well-known tests of normality, 

namely the Kolmogorov-Smirnov Test and the Shapiro-Wilk Test. We Shapiro-

Wilk Test is more appropriate for small sample sizes (< 50 samples) but can also 

handle sample sizes as large as 2000. For this reason, we will use the Shapiro-

Wilk test as our numerical means of assessing normality. 



We can see from the above table that for the "Beginner", "Intermediate" and 

"Advanced" Course Group the dependent variable, "Time", was normally 

distributed. How do we know this? If the Sig. value of the Shapiro-Wilk Test is 

greater the 0.05 then the data is normal. If it is below 0.05 then the data 

significantly deviate from a normal distribution. 

If you need to use skewness and kurtosis values to determine normality, rather 

the Shapiro-Wilk test, you will find these in our upgraded Premium SPSS guide. 

Check out our low prices here. 

Normal Q-Q Plot 

In order to determine normality graphically we can use the output of a normal Q-

Q Plot. If the data are normally distributed then the data points will be close to 

the diagonal line. If the data points stray from the line in an obvious non-linear 

fashion then the data are not normally distributed. As we can see from the 

normal Q-Q plot below the data is normally distributed. If you at all unsure of 

being able to correctly interpret the graph then rely on the numerical methods 

instead as it can take a fair bit of experience to correctly judge the normality of 

data based on plots. 

 

If you need to know what Normal Q-Q Plots look like when distributions are not 

normal (e.g. negatively skewed), you will find these in our upgraded Premium 

SPSS guide. Check out our low prices here. 

https://statistics.laerd.com/plans-and-pricing.php
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Testing for Normality using SPSS (cont...) 
Procedure when there are two or more independent variables 

The Explore... command on its own cannot separate the dependent variable into 

groups based on not one but two or more independent variables. However, we 

can perform this feat by using the Split File... command. 

1. Click Data > Split File... on the top menu as shown below:  

 

2. You will be presented with the following screen:  



 

3. Click the radio option, "Organize output by groups". Transfer the 

independent variables you wish to categorize the dependent variable on 

into the "Groups Based on:". In this example, we want to know whether 

interest in politics (Int_Politics) is normally distributed when 

grouped/categorized by Gender AND Edu_Level (education level). You will 

be presented with the following screen:  

 

Click the button. 

[Your file is now split and the output from any tests will be organized into 

the groups you have selected.] 



4. Click Analyze > Descriptive Statistics > Explore... on the top menu as 

shown below:  

 

5. You will be presented with the following screen:  

 

6. Transfer the variable that needs to be tested for normality into the 

"Dependent List:" box by either drag-and-dropping or using the 

 button. In this example, we transfer the "Int_Politics" variable into the 

"Dependent List:" box. You will then be presented with the following 

screen:  



 

 [There is no need to transfer the independent variables "Gender" and 

"Edu_Level" into the "Factor List:" box as this has been accomplished with 

the Split File... command. Why not simply transfer these two independent 

variables into the "Factor List:" box? Because this will not achieve the 

desired result. It will first analyse "Int_Politics" for normality with respect 

to "Gender" and then with respect to "Edu_Level". It does NOT analyse 

"Int_Politics" for normality by grouping individuals into both "Gender" and 

"Edu_Level" AT THE SAME TIME.] 

7. Click the button. You will be presented with the following screen:  

 

Leave the above options unchanged and click the button. 

8. Click the button. Change the options so that you are presented 

with the following screen:  



 

Click the button. 

9. Click the button.  

Output 

You will now see that the output has been split into separate sections based on 

the combination of groups of the two independent variables. As an example we 

show the tests of normality when the dependent variable, "Int_Politics", is 

categorized into the first "Gender" group (male) and first "Edu_Level" group 

(School). All other possible combinations are also presented in the full output but 

we will not shown them here for clarity. 

 

Under this above category you are presented with the Tests of Normality table 

as shown below: 

 

The Shapiro-Wilk test is now analyzing the normality of "Int_Politics" on the data 

of those individuals that are classified as both "male" in the independent variable 

"Gender" and "school" in the independent variable "Edu_Level". As the Sig. value 



under the Shapiro-Wilk column is greater than 0.05 we can conclude that 

"Int_Politics" for this particular subset of individuals is normally distributed. 

The same data from the same individuals are now also being analyzed to produce 

a Normal Q-Q Plot as below. From this graph we can conclude that the data 

appears to be normally distributed as it follows the diagonal line closely and does 

not appear to have a non-linear pattern. 

 

Predicting Scores 

Linear Regression Analysis using SPSS 
  

Objectives 

Regression analysis is the next step up after correlation; it is used when we want 

to predict the value of a variable based on the value of another variable. In this 

case, the variable we are using to predict the other variable's value is called the 

independent variable or sometimes the predictor variable. The variable we are 

wishing to predict is called the dependent variable or sometimes the outcome 

variable. 

Example 

https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php


A saleman for a large car brand is interested in determining whether there is a 

relationship between an individual's income and the price they pay for a car. They 

will use this information to determine which cars to offer potential customers in 

new areas where average income is known. 

Assumptions 

 Variables are measured at the interval or ratio level (continuous) (see 

Types of Variable guide). 

 Variables are approximately normally distributed (see Testing for 

Normality guide). 

 There is a linear relationship between the two variables. 

Procedure 

1. Click Analyze > Regression > Linear... on the top menu.  

 

2. You will be presented with the following dialog box:  

https://statistics.laerd.com/statistical-guides/types-of-variable.php
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3. Transfer the independent (predictor) variable, Income, into the 

"Independent(s):" box and the dependent (outcome) variable, Price, into 

the "Dependent:" box. You can do this by either drag-and-dropping or by 

using the buttons.  



 

4. Click the button.  

Output of Linear Regression Analysis 

SPSS will generate quite a few tables in its results section for a linear regression. 

In this session, we are going to look at the important tables. The first table of 

interest is the Model Summary table. This table provides the R and R2 value. 

The R value is 0.873, which represents the simple correlation and, therefore, 

indicates a high degree of correlation. The R2 value indicates how much of the 

dependent variable, price, can be explained by the independent variable, income. 

In this case, 76.2% can be explained, which is very large. 

 

The next table is the ANOVA table. This table indicates that the regression model 

predicts the outcome variable significantly well. How do we know this? Look at 

the "Regression" row and go to the Sig. column. This indicates the statistical 

significance of the regression model that was applied. Here, P < 0.0005 which is 

less than 0.05 and indicates that, overall, the model applied is significantly good 

enough in predicting the outcome variable. 



 

The table below, Coefficients, provides us with information on each predictor 

variable. This provides us with the information necessary to predict price from 

income. We can see that both the constant and income contribute significantly to 

the model (by looking at the Sig. column). By looking at the B column under the 

Unstandardized Coefficients column we can present the regression equation 

as: 

Price = 8287 + 0.564(Income) 
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Associations 
Pearson's Product-Moment Correlation using SPSS 
34  

Objectives 

The Pearson product-moment correlation coefficient is a measure of the strength 

and direction of association that exists between two variables measured on at 

least an interval scale. It is denoted by the symbol r. An introductory guide to this 

test is provided in our Statistical Guides section here and we recommend you 

read it if you are not familiar with this test. 

Assumptions 

 Variables are measured at the interval or ratio level (continuous) (see 

Types of Variable guide). 

 Variables are approximately normally distributed (see Testing for 

Normality guide). 

 There is a linear relationship between the two variables. 

 Pearsons's r is sensitive to outliers so it is best if outliers are kept to a 

minimum or there are no outliers. 
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How to test the assumptions for a Pearson's correlation and what to do when you 

have any violations of these assumptions is fully explained in our upgraded 

Premium SPSS guide. Check out our low prices here. 

Example 

A researcher wishes to know whether a person's height is related to how well 

they perform in a long jump. The researcher recruited untrained individuals from 

the general population, measured their height and had them perform a long 

jump. The researcher then investigates whether there is an association between 

height and long jump performance. 

Testing assumptions 

Your variables need to be normally distributed. To determine whether your 

samples are normally distributed read our guide on Testing for Normality in SPSS. 

Pearson's r is also very susceptible to outliers in the data so you need to test for 

outliers. What if your samples are not normally distributed or there are outliers? 

If your samples violate the assumption of normality or have outliers then you 

might need to consider using a non-parametric test such as Spearman's 

Correlation. 

Test Procedure in SPSS 

1. Click Analyze > Correlate > Bivariate... on the menu system as shown 

below:  
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You will be presented with the following screen: 

 
Published with written permission from SPSS Inc, an IBM Company. 

2. Transfer the variables "Height" and "Jump_Dist" into the "Variables:" box 

by dragging-and-dropping or by clicking the button. You will end up 

with a screen similar to the one below:  



 

Published with written permission from SPSS Inc, an IBM Company. 

3. Make sure that the Pearson tickbox is checked under the "Correlation 

Coefficients" group (although it is selected by default in SPSS). 

4. Click the button. If you wish to generate some descriptives you 

can do it here by clicking on the particular tickbox.  

 

Published with written permission from SPSS Inc, an IBM Company. 

Then click the button. 

5. Click the button. 



Output 

You will be presented with the Correlations table in the output viewer as below: 

 
Published with written permission from SPSS Inc, an IBM Company. 

The results are presented in a matrix such that, as can be seen above, the 

correlations are replicated. Nevertheless, the table presents the Pearson 

correlation coefficient, the significance value and the sample size that the 

calculation is based on. In this example, we can see that the Pearson correlation 

coefficient, r, is 0.777 and that this is statistically significant (p < 0.0005). 

Understanding the Output 

In our example you might present the results are follows: 

A Pearson product-moment correlation was run to determine the relationship 

between an individual's height and their performance in a long jump (distance 

jumped). The data showed no violation of normality, linearity or homoscedasticity 

(you will need to have checked for these). There was a strong, positive 

correlation between height and distance jumped, which was statistically 

significant (r = .777, n = 27, p < .0005). 

 

 

Spearman's Rank Order Correlation using SPSS 
25  

Objectives 

The Spearman Rank Order Correlation coefficient, rs, is a non-parametric measure 

of the strength and direction of association that exists between two variables 

measured on at least an ordinal scale. It is denoted by the symbol rs (or the 

greek letter ,pronounced rho). The test is used for either ordinal variables or for 

interval data that has failed the assumptions necessary for conducting the 

Pearson's product-moment correlation. If you would like some more background 

on this test you can find it in our statistical guide here. 

Assumptions 

 Variables are measured on an ordinal, interval or ratio scale (see out 

Types of Variable article). 
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 Variables need NOT be normally distributed. 

 There is a monotonic relationship between the two variables, i.e. either 

the variables increase in value together or as one variable value increases 

the other variable value decreases (see guide here for more information). 

 This type of correlation is NOT very sensitive to outliers. 

Example 

A teacher is interested in those who do the best at English also do better in Maths 

(assessed by exam) students in English are also the best performers in Maths. 

She records the scores of her 10 students as they performed in end-of-year 

examinations for both English and Maths. 

Test Procedure in SPSS 

1. Click Analyze > Correlate > Bivariate... on the menu system as shown 

below:  

 

Published with written permission from SPSS Inc, an IBM Company. 

2. Transfer the variables "English_Mark" and "Maths_Mark" into the 

"Variables" box by dragging-and-dropping or by clicking the button. You 

will end up with a screen similar to the one below:  

http://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php


 

Published with written permission from SPSS Inc, an IBM Company. 

3. Make sure that you uncheck the Pearson tickbox (it is selected by default 

in SPSS) and check the Spearman tickbox under the "Correlation 

Coefficients" group. 

4. Click the button. 

Output 

You will be presented with 3 tables in output viewer under the title "Correlations" 

as below: 

 
Published with written permission from SPSS Inc, an IBM Company. 

The results are presented in a matrix such that, as can be seen, the correlations 

are replicated. Nevertheless, the table presents Spearman's Rank Order 

Correlation, its significance value and the sample size that the calculation was 



based on. In this example, we can see that Spearman's correlation coefficient, rs, 

is 0.669 and that this is statistically significant (P = 0.035). 

Reporting the Output 

In our example you might present the results are follows: A Spearman's Rank 

Order correlation was run to determine the relationship between 10 students' 

English and maths exam marks. There was a strong, positive correlation between 

English and maths marks, which was statistically significant (rs(8) = .669, P = 

.035). 

Chi-Square Test for Association using SPSS 
48  

Objective 

The Chi-Square test for independence, also called Pearson's Chi-square test or 

the Chi-square test of association is used to discover if there is a relationship 

between two categorical variables. 

Example 

Educators are always looking for novel ways in which to teach statistics to 

undergraduates as part of a non-statistics degree course, e.g. psychology. With 

current technology it is possible to present how-to guides for statistical programs 

online instead of in a book. However, different people learn in different ways. An 

educator would like to know whether gender (male/female) is associated with the 

preferred type of learning medium (online vs. books). We therefore have two 

nominal variables: Gender(male/female) and Preferred Learning Medium 

(online/books). 

Assumptions 

 Two variables that are ordinal or nominal (categorical data). (see our 

guide on Types of Variable) 

 There are two or more groups in each variable. 

Test Procedure in SPSS 

1. Click Analyze > Descriptives Statistics > Crosstabs... on the to menu 

as shown below:  
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2. You will be presented with the following:  

 

Published with written permission from SPSS Inc, an IBM Company. 

3. Transfer one of the variables into the "Row(s):" box and the other variable 

into the "Column(s):" box. In our example we will transfer the "Gender" 

variable into the "Row(s):" box and "Preferred_Learning" into the 

"Column(s):" box. There are two ways to do this. You can highlight the 

variable with your mouse and then use the relevant buttons to transfer 



the variables or you can drag-and-drop the variables. How do you know 

which variable goes in the row or column box? There is no right or wrong 

way. It will depend on how you want to present your data.  

If you want to display clustered bar charts (recommended) then make sure 

that "Display clustered bar charts" checkbox is ticked. 

You will end up with a screen similar to the one below: 
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4. Click on the button. Select the "Chi-square" and "Phi and 

Cramer's V" options as shown below:  



 

Published with written permission from SPSS Inc, an IBM Company. 

Click the button. 

5. Click the button. Select "Observed" from the "Counts" area and 

"Row", "Column" and "Total" from the "Percentages" area as shown below:  

 

Published with written permission from SPSS Inc, an IBM Company. 

Click the button. 



6. Click the button. [This next option is only really useful if you 

have more than two categories in one of your variables but we will show it 

here in case you have]  

You will be presented with the following: 

 

Published with written permission from SPSS Inc, an IBM Company. 

This option allows you to change the order of the values to either 

ascending or descending. 

Once you have made your choice click the button. 

7. Click the button to generate your output.  

Output 

You will be presented with some tables in the Output Viewer under the title 

"Crosstabs". The tables of note are presented below: 

The Crosstabulation Table (Gender*Preferred Learning Medium Crosstabulation) 
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This table allows us to understand that both males and females prefer to learn 

using online materials vs. books. 

The Chi-Square Tests Table 
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When readings this table we are interested in the results for the Continuity 

correction. We can see here that Chi-square(1) = 0.487, P = 0.485. This tells us 

that there is no statistically significant association between Gender and Preferred 

Learning Medium. That is, both Males and Females equally prefer online learning 

vs. books. If you had a 2 x 2 contingency table and small numbers then ...... 

The Symmetric Measures Table 
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Phi and Cramer's V are both tests of the strength of association. We can see that 

the strength of association between the variables is very weak. 

Bar chart 
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It can be easier to visualize data than read tables. The clustered bar chart option 

allows a relevant graph to be produced that highlights the group categories and 

the frequency of counts in these groups. 

Reliability 

Cronbach's Alpha (α) using SPSS 
88  

Introduction 

Cronbach's alpha is the most common measure of internal consistency 

("reliability"). It is most commonly used when you have multiple Likert questions 

in a survey/questionnaire that form a scale and you wish to determine if the scale 

is reliable. 

Example 

A researcher has devised a nine-question questionnaire with which they hope to 

measure how safe people feel at work at an industrial complex. Each question 

was a 5-point Likert item from "strongly disagree" to "strongly agree". In order to 

understand whether the questions in this questionnaire all reliably measure the 

https://statistics.laerd.com/spss-tutorials/cronbachs-alpha-using-spss-statistics.php##


same latent variable (feeling of safety) (so a Likert scale could be constructed), a 

Cronbach's alpha was run on a sample size of 15 workers. 

Setup in SPSS 

The nine questions have been labelled "Qu1" through to "Qu9". To know how to 

correctly enter your data into SPSS in order to run a Cronbach's alpha test please 

read our Entering Data into SPSS tutorial. 

Test Procedure in SPSS 

1. Click Analyze > Scale > Reliability Analysis... on the top menu as 

shown below:  

 

Published with written permission from SPSS Inc, an IBM Company. 

2. You will be presented with the Reliability Analysis dialogue box:  

https://statistics.laerd.com/spss-tutorials/entering-data-in-spss-statistics.php#repeatedmeasures
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3. Transfer the variables "Qu1" to "Qu9" into the "Items:" box. You can do 

this by drag-and-dropping the variables into their respective boxes or by 

using the button. You will be presented with the following screen:  
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4. Leave the "Model:" set as "Alpha", which represents Cronbach's alpha in 

SPSS. If you want to provide a name for the scale enter it in the "Scale 

label:" box. Since this only prints the name you enter at the top of the 



SPSS output, it is certainly not essential that you do; and in this case we 

will leave it blank.  

5. Click on the button, which will present the Reliability Analysis: 

Statistics dialogue box, as shown below:  
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6. Select the "Item", "Scale" and "Scale if item deleted" in the "Descriptives 

for" box and "Correlations" in the "Inter-Item" box, as shown below:  
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7. Click the button. This will return you to the Reliability Analysis 

dialogue box.  

8. Click the button to generate the output.  

SPSS Output for Cronbach's Alpha 

SPSS produces many different tables. The first important table is the Reliability 

Statistics table that provides the actual value for Cronbach's alpha, as shown 

below: 
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We can see that in our example, Cronbach's alpha is 0.805, which indicates a 

high level of internal consistency for our scale with this specific sample. 

Item-Total Statistics 

The Item-Total Statistics table presents the Cronbach's Alpha if Item 

Deleted in the final column , as shown below: 
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This column presents the value that Cronbach's alpha would be if that particular 

item was deleted from the scale. We can see that removal of any question except 

question 8, would result in a lower Cronbach's alpha. Therefore, we would not 

want to remove these questions. Removal of question 8 would lead to a small 

improvement in Cronbach's alpha and we can also see that the Corrected Item-

Total Correlation value was low (0.128) for this item. This might lead us to 

consider whether we should remove this item. 

Cronbach's alpha simply provides you with an overall reliability coefficient for a 

set of variables, e.g. questions. If your questions reflect different underlying 

personal qualities (or other dimensions), for example, employee motivation and 

employee commitment, then Cronbach's alpha will not be able to distinguish 

between these. In order to do this and then check their reliability (using 

Cronbach's alpha), you will first need to run a test such as a principal components 

analysis (PCA). If this sounds like something you would want to do, check out the 

features of our Premium PCA guide, here. 
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Independent T-Test using SPSS 
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Objectives 

The independent t-test compares the means between two unrelated groups on 

the same continuous, dependent variable. The SPSS t-test procedure allows the 

testing of equality of variances (Levene's test) and the t-value for both equal- 

and unequal-variance. It also provides the relevant descriptive statistics. A 

statistical guide on the independent t-test is provided here. 
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You can access our much more comprehensive version of this guide for FREE, 

normally only available in our Laerd Statistics Premium section, here. We have 

made the guide available to illustrate the difference between our free and 

enhanced guides. 

Assumptions 

 Independent variable consists of two independent groups. 

 Dependent variable is either interval or ratio (see our guide on Types of 

Variable). 

 Dependent variable is approximately normally distributed (see Testing 

for Normality article) 

 Similiar variances between the two groups (homogeneity of variances) 

(tested for in this t-test procedure). 

Background to Example 

The concentration of cholesterol (a type of fat) in the blood is associated with the 

risk of developing heart disease, such that higher concentrations of cholesterol 

indicate a higher level of risk and lower concentrations indicate a lower level of 

risk. If you lower the concentration of cholesterol in the blood then your risk for 

developing heart disease can be reduced. Being overweight and/or physically 

inactive increases the concentration of cholesterol in your blood. Both exercise 

and weightloss can reduce cholesterol concentration. However, it is not known 

whether exercise or weightloss is best for lowering blood cholesterol 

concentration.  

Example 

A random sample of inactive male individuals that were classified as overweight 

were recruited to a study to investigate whether an exercise or weight loss 

intervention is more effective in lowering cholesterol levels. To this end, they 

randomly split the group into two sub-groups; one group underwent an exercise 

training programme and the other group undertook a calorie-controlled diet. In 

order to determine which treatment programme was more effective, the mean 

cholesterol concentrations were compared between the two groups at the end of 

the treatment programmes. 

Setup in SPSS 

In SPSS we separated the groups for analysis by creating a grouping variable 

called "Group" and gave the exercise group a value of "1" and the diet group a 

value of "2". Cholesterol concentrations were entered under the variable name 

"Cholesterol". How to correctly enter data in SPSS to run an independent t-test 

is explained in our guide here. 

Descriptives 

Unless you have other reasons to do so, it would be considered normal to present 

information on the mean and standard deviation for this data. You might also 

state the number of participants you had in each group that were to be analysed. 
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This is in case you have, for example, missing values and the number of recruited 

participants is larger than that which can be analysed. 

You might also wish to present a diagram so that you can show your results 

visually in order that a reader might understand them better. You could present a 

bar chart with error bars (for example, SD or 95% CI) (see our guide here). 

Testing assumptions 

To determine whether your samples are normally distributed read our Testing for 

Normality article. What if your samples are not normally distributed? Well, if your 

data set is large then small deviations are generally tolerable. However, if your 

samples are small or your data set is largely non-normal then you need to 

consider a non-parametric test instead, such as the Mann-Whitney U Test. 

The assumption of equal variances is tested in SPSS by Levene's Test for Equality 

of Variances. The result of this test is presented in the output when running an 

independent t-test and is discussed later in this guide. 

Test Procedure in SPSS 

1. Click Analyze > Compare Means > Independent-Samples T Test... 

on the top menu as shown below. 
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You will be presented with the following: 
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2. Put the "Cholesterol Concentration" variable into the "Test Variable(s):" 

box and the "Treatment" variable into the "Grouping Variable:" box by 

highlighting the relevant variables and pressing the  buttons.  

 

Published with written permission from SPSS Inc, an IBM company. 

3. You then need to define the groups (treatments). Press the 

button.  

You will be presented with the following screen: 



 

Published with written permission from SPSS Inc, an IBM company. 

4. Enter "1" into the "Group 1:" box and enter "2" into the "Group 2:" box. 

Remember that we labelled the Diet Treatment group as "1" and the 

Exercise Treatment group as "2". If you have more than 2 treatment 

groups, e.g. a diet, exercise and drug treatment group, then you could 

type in "1" to "Group 1:" box and "3" to "Group 2:" box if you wished to 

compare the diet with drug treatment.  

 

Published with written permission from SPSS Inc, an IBM company. 

5. Press the button  

6. If you need to change the confidence level limits, or change how to 

exclude cases then press the button.  

You will be presented with the following: 
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7. Click the button.  

8. Click the button.  

Output of the independent t-test in SPSS 

You will be presented with two tables containing all the data generated by the 

independent t-test procedure in SPSS. 

Group Statistics Table 

This table provides useful descriptive statistics for the two groups that you 

compared including the mean and standard deviation. 
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Independent Samples Test Table 

This table provides the actual results from the independent t-test and Levine's 

Test for Equality of Variances. [In order to fit the image of this table onto this 

webpage we have swapped the rows and columns in the table so that the table is 

arranged vertically not horizontally. Therefore, you will be presented with a 

slightly differently looking table but the data and interpretation remain the same. 

By clicking on the image below you will see the original, horizontally arranged 

table so that you are able to compare the two.] 
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The first thing you need to do is check to see if you have similar variances in the 

two groups by checking the result of Levine's Test for Equality of Variances. To 

check this, look at the "Sig." row within Levine's Test for Equality of 

Variances row as highlighted below: 
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If the variances are equal in both groups, then the p-value ("Sig.") will be greater 

than 0.05. However, if the p-value is less than 0.05, the variances are unequal. If 

you have unequal variances then you need to use the Equal variances not 

assumed column otherwise you use the Equal variances assumed column. 

In this case, we have a p-value of 0.579 for Levene's test so we can conclude 

that we have equal variances and we look at the Equal variances assumed 

column. Looking down this column we can see that the group means are 

significantly different as the value in the "Sig. (2-tailed)" row is less than 0.05. 

Looking at the Group Statistics table we can see that those people that 

undertook the exercise trial had lower cholesterol levels at the end of the 

programme than those that underwent a calorie-controlled diet. 

Reporting the output of the independent t-test 



We might report the statistics in the following format: t(degrees of freedom[df]) 

= t-value, p = significance level. In our case this would be: t(38) = 2.470, p = 

0.018. Therefore, we might report the results of the study as follows: 

This study found that overweight and physically inactive male participants had 

statistically significant lower cholesterol levels (5.78 ± 0.38 mmol/L) at the end of 

an exercise training programme vs. after a calorie-controlled diet (6.21 ± 0.65 

mmol/L) (t(38) = 2.470, p = 0.018). 

 

 

Dependent T-Test using SPSS 
17  

Objectives 

The dependent t-test (called the Paired-Samples T Test in SPSS) compares the 

means between two related groups on the same continuous variable. The SPSS 

paired-samples t-test procedure also provides relevant descriptive statistics. For 

an easy-to-follow guide on the dependent t-test please see our statistical guide. 

Assumptions 

 Dependent variable is interval or ratio (continuous) (see our Types of 

Variable guide). 

 The differences in the dependent variable between the two related groups 

are approximately normally distributed. 

 Independent variable consists of two related groups or "matched-

pairs". 

 No outliers in the differences between the two related groups. 

It is vitally important to check these assumptions because if they are violated the 

result of the dependent t-test can be invalid. How to first calculate the difference 

scores, and then to check the above assumptions on these scores, is presented in 

the enhanced version of this guide, available as part of our Laerd Statistics 

Premium content. To get a sense of the advantages of purchasing access to Laerd 

Statistics Premium, you can view our enhanced Independent-samples t-test in 

SPSS guide for free (normally Premium). To go straight to the relevant section for 

testing assumptions, click here. This enhanced guide also explain what to do if 

you violate any of the assumptions. You can check out our low prices for access 

to all the enhanced content in our Premium section here. 

Example 

A group of Sports Science students (n = 20) are selected from the population to 

investigate whether a 12 week plyometric training programme improves their 

standing long jump performance. In order to test whether this training improves 

performance, the sample group are tested for their long jump performance before 

they undertake a plyometric training programme and then again at the end of the 

programme. 

https://statistics.laerd.com/features-1.php
https://statistics.laerd.com/features-1.php
https://statistics.laerd.com/spss-tutorials/dependent-t-test-using-spss-statistics.php##
https://statistics.laerd.com/statistical-guides/dependent-t-test-statistical-guide.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://statistics.laerd.com/spss-tutorials/independent-t-test-in-spss.php
https://statistics.laerd.com/spss-tutorials/independent-t-test-in-spss.php
https://statistics.laerd.com/spss-tutorials/independent-samples-t-test-5.php
https://statistics.laerd.com/plans-and-pricing.php


Test Procedure in SPSS 

[If you are unsure of how to correctly enter your data into SPSS in order to run a 

dependent t-test then read our guide on how to do it here. Our enhanced guide 

includes a description of the file set-up and the ability to download the SPSS file 

for the guide.] 

1. Click Analyze > Compare Means > Paired-Samples T Test... on the 

top menu.  
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2. You will be presented with the following:  
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3. You need to transfer the variables "JUMP1" and "JUMP2" into the "Paired 

Variables:" box. There are two ways to do this. You can either highlight 

both variables (use the cursor and hold down the shift key and press 

the  button, or you can drag and drop each variable into the boxes). If 

you are using older versions of SPSS, you will need to transfer the 

variables using the former method.  

You will end up with a screen similar to the one below: 

 

Published with written permission from SPSS Inc, an IBM company. 



button shifts the pair of variables you have highlighted down one 

level. 

button shifts the pair of variables you have highlighted up one level. 

button shifts the order of the variables with a variable pair itself. 

4. If you need to change the confidence level limits or to exclude cases then 

press the button:  
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Click on the button. 

5. Click the button to generate the output. 

SPSS Output of the Dependent T-Test 

You will be presented with three tables in the Output Viewer under the title "T-

Test" but you only need to look at two tables - the Paired Sample Statistics 

table and the Paired Samples Test table, as discussed below: 

Paired Sample Statistics Table 

The first table titled Paired Sample Statistics is where SPSS has generated 

descriptive statistics for your variables. You can use the data here to describe the 

characteristics of the first and second jumps in your results. 
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Paired Samples Test Table 

The Paired Samples Test table is where the results of the dependent t-test are 

presented. A lot of information is presented here and it is important to remember 



that this information refers to the differences between the two jumps (the 

subtitle reads "Paired Differences"). As such, the columns of the table labelled 

"Mean", "Std. Deviation", "Std. Error Mean", 95% CI refer to the mean difference 

between the two jumps and the standard deviation, standard error and 95% CI of 

this mean difference, respectively. The last 3 columns express the results of the 

dependent t-test, namely the t-value, the degrees of freedom and the 

significance level. 
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Reporting the output of the Dependent T-Test 

We might report the statistics in the following format: t(degrees of freedom[df]) 

= t-value, p = significance level. In our case this would be: t(19) = -4.773, p < 

0.0005. Due to the means of the two jumps and the direction of the t-value we 

can conclude that there was a statistically significant improvement in jump 

distance following the plyometric training programme from 2.48 ± 0.16 m to 2.52 

± 0.16 m (p < 0.0005); an improvement of 0.03 ± 0.03 m. 

N.B. SPSS will output many results to many decimal places but you should 

understand your measuring scale to know whether it is appropriate to report your 

results in such accuracy. 

A full explanation of the results for a dependent t-test is included in our enhanced 

guide in Laerd Statistics Premium. You can find out about pricing here. 

Dependent T-Test for Paired Samples 
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What does this test do? 

The dependent t-test (also called the paired t-test or paired-samples t-test) 

compares the means of two related groups to detect whether there are any 

statistically significant differences between these means. 

If you wish to learn how to calculate the dependent t-test then we have a 

dependent t-test calculator that also generates all the working involved in getting 

to the answer. The calculator can be found here. 

What variables do you need for a dependent t-test? 
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https://statistics.laerd.com/statistical-guides/dependent-t-test-statistical-guide.php##
https://statistics.laerd.com/calculators/dependent-t-test-paired-samples-calculator.php


You need one dependent variable that is measured on an interval or ratio scale 

(see our Types of Variable guide if you need clarification). You also need one 

categorical variable that has only two related groups. 

What is meant by "related groups"? 

A dependent t-test is an example of a "within-subjects" or "repeated-measures" 

statistical test. This indicates that the same subjects are tested more than once. 

Thus, in the dependent t-test, "related groups" indicates that the same subjects 

are present in both groups. The reason that it is possible to have the same 

subjects in each group is because each subject has been measured on two 

occasions on the same dependent variable. For example, you might have 

measured 10 individuals' (subjects') performance in a spelling test (the 

dependent variable) before and after they underwent a new form of computerised 

teaching method to improve spelling. You would like to know if the computer 

training improved their spelling performance. Here, we can use a dependent t-

test as we have two related groups. The first related group consists of the 

subjects at the beginning (prior to) the computerised spell training and the 

second related group consists of the same subjects but now at the end of the 

computerised training. 

Does the dependent t-test test for "changes" or "differences" between related 

groups? 

The dependent t-test can be used to test either a "change" or a "difference" in 

means between two related groups but not both at the same time. Whether you 

are measuring a "change" or "difference" between the means of the two related 

groups depends on your study design. The two types of study design are 

indicated in the following diagrams. 

How do you detect differences between experimental conditions using the 

dependent t-test? 

The dependent t-test can look for "differences" between means when subjects are 

measured on the same dependent variable under two different conditions. For 

example, you might have tested subjects' eyesight (dependent variable) when 

wearing two different types of spectacle (independent variable). See the diagram 

below for a general schematic of this design approach (click the image to 

enlarge): 

https://statistics.laerd.com/statistical-guides/types-of-variable.php


 

Find out more about the dependent t-test on the next page. 
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How do you detect changes in time using the dependent t-test? 

The dependent t-test can also look for "changes" between means when the 

subjects are measured on the same dependent variable but at two time points. A 

common use of this is in a pre-post study design. In this type of experiment we 

measure subjects at the beginning and at the end of some intervention, e.g. an 

exercise-training programme or business-skills course. A general schematic is 

provided below (click image to enlarge): 
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How else might you use the dependent t-test? 

You can also use the dependent t-test to study more complex study designs 

although it is not normally recommended. The most common, more complex 

study design where you might use the dependent t-test is where you have a 

crossover design with two different interventions that are both performed by the 

same subjects. One example of this design is where you have one of the 

interventions act as a control. For example, you might want to investigate 

whether a course of diet counselling can help people lose weight. To study this 

you could simply measure subjects' weight before and after the diet counselling 

course for any changes in weight using a dependent t-test. However, to improve 

the study design you also include want to include a control trial. During this 

control trial, the subjects could either receive "normal" counselling or do nothing 

at all or something else you deem appropriate. In order to assess this study using 

a dependent t-test you would use the same subjects for the control trial as the 

diet counselling trial. You then measure the differences between the interventions 

at the end, and only at the end, of the two interventions. Remember, however, 

that this is unlikely to be the preferred statistical analysis for this study design. 

What are the assumptions of the dependent t-test? 

The types of variable needed for the dependent t-test have already been 

discussed earlier in this guide. In addition, the distribution of the differences 

between the scores of the two related groups needs to be normally distributed. 

We do this by simply subtracting each individuals' score in one group from their 

score in the other related group and then testing for normality in the normal way 

(see our guide on how to test for normality in SPSS here). It is important to note 

that the two related groups do not need to be normally distributed themselves - 

just the differences between the groups. 
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What hypothesis is being tested? 

The dependent t-test is testing the null hypothesis that there are no differences 

between the means of the two related groups. If we get a significant result then 

we can reject the null hypothesis that there are no significant differences between 

the means and accept the alternative hypothesis that there are statistically 

significant differences between the means. We can express this as follows: 

H0: µ1 = µ2 

HA: µ1 ≠ µ2 

What is the advantage of a dependent t-test over an independent t-test? 

Before we answer this question, we need to point out that you cannot choose one 

test over the other unless your study design allows it. What we are discussing 

here is whether it is advantageous to design a study that uses one set of subjects 

whom are measured twice or two separate groups of subjects measured once 

each. The major advantage of choosing a repeated-measures design (and 

therefore running a dependent t-test) is that you get to eliminate the individual 

differences that occur between subjects - the concept that no two people are the 

same - and this increases the power of the test. What this means is that you are 

more likely to detect any significant differences, if they do exist, using the 

dependent t-test versus the independent t-test. 

Can the dependent t-test be used to compare different subjects? 

Yes, but this does not happen very often. You can use the dependent t-test 

instead of using the usual independent t-test when each subject in one of the 

independent groups is closely related to another subject in the other group on 

many individual characteristics. This approach is called a "matched-pairs" design. 

The reason we might want to do this is that the major advantage of running a 

within-subject (repeated-measures) design is that you get to eliminate between-

groups variation from the equation (each individual is unique and will react 

slightly differently than someone else), thereby increasing the power of the test. 

Hence, the reason why we use the same subjects - we expect them to react in 

the same way as they are, after all, the same person. The most obvious case of 

when a "matched-pairs" design might be implemented is when using identical 

twins. Effectively you are choosing parameters to match your subjects on which 

you believe will result in each pair of subjects reacting in a similar way. 

How do I report the result of a dependent t-test? 

You need to report the test as follows: 

https://statistics.laerd.com/statistical-guides/dependent-t-test-statistical-guide-3.php##


 

where df is N - 1, where N = number of subjects.  

Should I report confidence levels? 

Confidence intervals (CI) are a useful statistic to include as they indicate the 

direction and size of a result. It is common to report 95% confidence intervals, 

which you will most often see reported as 95% CI. Programmes such as SPSS will 

automatically calculate these confidence intervals for you otherwise you need to 

calculate them by hand. You will want to report the mean and 95% confidence 

levels for the differences between the two related groups. 

If you wish to run a dependent t-test in SPSS then you can find out how to do 

this in our guide here. 

 

One-way ANOVA 
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What is this test for? 

The one-way analysis of variance (ANOVA) is used to determine whether there 

are any significant differences between the means of three or more independent 

(unrelated) groups. This guide will provide a brief introduction to the one-way 

ANOVA including the assumptions of the test and when you should use this test. 

If you are familiar with the one-way ANOVA then you can skip this guide and go 

straight to how to run this test in SPSS by clicking here. 

What does this test do? 

The one-way ANOVA compares the means between the groups you are interested 

in and determines whether any of those means are significantly different from 

each other. Specifically, it tests the null hypothesis: 

 

where µ = group mean and k = number of groups. If, however, the one-way 

ANOVA returns a significant result then we accept the alternative hypothesis (HA), 

which is that there are at least 2 group means that are significantly different from 

each other. 

At this point, it is important to realise that the one-way ANOVA is an omnibus test 

statistic and cannot tell you which specific groups were significantly different from 
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each other, only that at least two groups were. To determine which specific 

groups differed from each other you need to use a post-hoc test. Post-hoc tests 

are described later in this guide. 

When might you need to use this test? 

If you are dealing with individuals, you are likely to encounter this situation using 

two different types of study design: 

One study design is to recruit a group of individuals and then randomly split this 

group into 3 or more smaller groups, i.e. each subject is allocated to one, and 

only one, group. You then get each group to undertake different tasks (or put 

them under different conditions) and measure the outcome/response on the same 

dependent variable. For example, a researcher wishes to know whether different 

pacing strategies affect the time to complete a marathon. The researcher 

randomly assigns a group of volunteers to either a group that (a) starts slow and 

then increases their speed, (b) starts fast and slows down or (c) runs at a steady 

pace throughout. The time to complete the marathon is the outcome (dependent) 

variable. This study design is illustrated schematically in the Figure below: 

 

When you might use this test is continued on the next page. 

One-way ANOVA (cont...) 
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When might you need to use this test? (cont...) 

A second study design is to recruit a group of individuals and then split them into 

groups based on some independent variable. Again, each individual will be 

assigned to one group only. This independent variable is sometimes called an 

https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide-2.php
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attribute independent variable because you are splitting the group based on some 

attribute that they possess, e.g. their level of education; every individual has a 

level of education, even if it is "none". Each group is then measured on the same 

dependent variable having undergone the same task or condition (or none at all). 

For example, a researcher is interested in determining whether there are 

differences in leg strength between amateur, semi-professional and professional 

rugby players. The force/strength measured on an isokinetic machine is the 

dependent variable. This type of study design is illustrated schematically in the 

Figure below: 

 

Why not compare groups with multiple t-tests? 

Every time you conduct a t-test there is a chance that you will make a Type 1 

error. An ANOVA controls for these errors so that the Type 1 error remains at 5% 

and you can be more confident that any significant result you find is not just 

down to chance. See our guide on hypothesis testing for more information on 

Type I errors.  

What assumptions does the test make? 

There are three main assumptions, listed here: 

1. The dependent variable is normally distributed in each group that is being 

compared in the one-way ANOVA. So, for example, if we were comparing 

three groups; amateur, semi-professional and professional rugby players; 

on their leg strength, then their leg strength values (dependent variable) 

would have to be normally distributed for the amateur group of players, 

normally distributed for the semi-professionals and normally distributed for 



the professional players. You can test for normality in SPSS (see our guide 

here). 

2. There is homogeneity of variances. This means that the population 

variances in each group are equal. If you use SPSS, Levene's Test for 

Homogeneity of Variances is included in the output when you run a one-

way ANOVA in SPSS (see our One-way ANOVA using SPSS guide). 

3. This is a study design issue that you will so you will need to examine your 

study design to determine whether this could have occurred. 

What to do when the assumptions are not met is dealt with on the next page. 

One-way ANOVA (cont...) 
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What happens if my data fail these assumptions? 

Firstly, don't panic! The first two of these assumptions are easily fixable, even if 

the last assumption is not. Lets go through the options as above: 

1. The one-way ANOVA is considered a robust test against the normality 

assumption. This means that it tolerates violations to its normality 

assumption rather well. As regards the normality of group data, the one-

way ANOVA can tolerate data that is non-normal (skewed or kurtotic 

distributions) with only a small effect on the Type I error rate. However, 

platykurtosis can have a profound effect when your group sizes are small. 

This leaves you with two options: (1) transform your data using various 

algorithms so that the shape of your distributions become normally 

distributed (see our normality guide here) or (2) choose the non-

parametric Kruskal-Wallis H Test which does not require the assumption of 

normality (read our guide on this test here). 

2. There are two tests that you can run that are applicable when the 

assumption of homogeneity of variances has been violated: (1) Welch or 

(2) Brown and Forsythe test. Alternatively, you could run a Kruskal-Wallis 

H Test. For most situations it has been shown that the Welsh test is best. 

Both the Welch and Brown and Forsythe tests are available in SPSS (see 

our One-way ANOVA using SPSS guide). 

3. A lack of independence of cases has been stated as the most important 

assumptions to fail. Often, there is little you can do that offers a good 

solution to this problem. A full explanation of this problem and all 

assumptions mentioned here, including numerical explanations, are 

provided in Intermediate Statistics: A Modern Approach by Dr James 

Stevens. 

How do I run a one-way ANOVA? 

There are numerous ways to run a one-way ANOVA, however, we provide a 

comprehensive, step-by-step guide on how to do this using SPSS. 

How do I report the results of a one-way ANOVA? 
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You will have calculated the following results or obtained them from SPSS: 

Structure of results: 

Source SS df MS F Sig. 

Between SSb k-1 MSb MSb/MSw p value 

Within SSw N-k MSw     

Total SSb + SSw N-1       

An example: 

Source SS df MS F Sig. 

Between 91.476 2 45.733 4.467 .021 

Within 276.400 27 10.237     

Total 367.867 29       

You will want to report this as follows: 

There was a statistically significant difference between groups as determined by 

one-way ANOVA (F(2,27) = 4.467, P = .021). This is all you will need to write for 

the one-way ANOVA per se. However, in reality you will want probably also want 

to report means ± SD for your groups as well as follow-up a significant result 

with post-hoc tests. If you use SPSS then these descriptive statistics will be 

reported in the output along with the result from the one-way ANOVA. The 

general form of writing the result of a one-way ANOVA is as follows: 

 

where df = degrees of freedom.  

It is very important that you do not report the result as "significant difference" 

but that you report it as "statistically significant difference". This is because your 

decision as to whether the result is significant or not should not be based solely 

on your statistical test. Therefore, to indicate to readers that this "significance" is 

a statistical one, include this is your sentence. 

Find out what else you have to do when you have a significant or a not-significant 

ANOVA result on the next page. 

One-way ANOVA (cont...) 
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My p-value is greater than 0.05, what do I do now? 

https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide-4.php
https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide-4.php##


Report the result of the one-way ANOVA, e.g. "there were no statistically 

significant differences between group means as determined by one-way ANOVA 

(F(2,27) = 1.397, P = .15)". Not achieving a statistically significant result does 

not mean you should not report group means +/- SD also. However, running 

post-hoc tests is not warranted and should not be carried out.  

My p-value is less than 0.05, what do I do now? 

Firstly, you need to report your results as highlighted in the "How do I report the 

results?" section above. You then need to follow-up the one-way ANOVA by 

running post-hoc tests. 

Homogeneity of variances was violated; how to continue? 

You need to perform the same procedures as in the above three sections but add 

into your results section that this assumption was violated and you needed to run 

a Welch F test. 

What are post-hoc tests? 

Recall from earlier that the ANOVA test tells you whether you have an overall 

difference between your groups but it does not tell you which specific groups 

differed - post-hoc tests do. Because post-hoc tests are run to confirm where the 

differences occurred between groups, they should, therefore, only be run when 

you have a shown an overall significant difference in group means (i.e. a 

significant one-way ANOVA result). Post-hoc tests attempt to control the 

experimentwise error rate usually alpha = 0.05) in the same manner that the 

one-way ANOVA is used instead of multiple t-tests. Post-hoc tests are termed a 

posteriori tests - that is, performed after the event (the event in this case being a 

study). 

Which post-hoc test should I use? 

There are a great number of different post-hoc tests that you can use, however, 

you should only run one post-hoc test - do not run multiple post-hoc tests. For a 

one-way ANOVA, you will probably find that just one of four tests need to be 

considered. If your data meet the assumption of homogeneity of variances then 

either use the Tukey's honestly significant difference (HSD) or Scheffé post-hoc 

tests. Often, Tukey's HSD test is recommended by statisticians as it is not as 

conservative as the Scheffe test (which means that you are more likely to detect 

differences if they exist with Tukey's HSD test). Note that if you use SPSS, 

Tukey's HSD test is simply referred to as "Tukey" in the post-hoc multiple 

comparisons dialogue box). If your data did not meet the homogeneity of 

variances assumption then you should consider running either the Games Howell 

or Dunnett's C post-hoc test. The Games Howell test is generally recommended. 

How should I graphically present my results? 

First off, it is not essential that you present your results in a graphical form. 

However, it can add a lot of clarity to your results. There are a few key points to 

producing a good graph. Firstly, you need to present error bars for each group 

mean. It is customary to use the standard deviation of each group but standard 



error and confidence limits are also used in the literature. You should also make 

sure that the scale is appropriate for what you are measuring. These points and 

more are discussed in our guide on selecting an appropriate graph (guide here). 

Generally, if graphically presenting data from an ANOVA, we recommend using a 

bar chart with standard deviation bars.  

What to do now? 

Now that you understand the one-way ANOVA, go to our guide on how to run the 

test in SPSS here. 

ANOVA with Repeated Measures using SPSS 
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Overview 

An ANOVA with repeated measures is for comparing three or more group means 

where the participants are the same in each group. This usually occurs in two 

situations - when participants are measured multiple times to see changes to an 

intervention or when participants are subjected to more than one condition/trial 

and the response to each of these conditions wants to be compared. For a 

complete guide on ANOVA with Repeated Measures, please go to our guide here. 

Example 

Heart disease is one of the largest causes of premature death and it is now 

known that chronic, low-level inflammation is a cause of heart disease. Exercise is 

known to have many benefits including protection against heart disease. A 

researcher wished to know whether this protection against heart disease might be 

afforded by exercise reducing inflammation. The researcher was also curious as 

to whether this protection might be gained over a short period of time or whether 

it took longer. In order to investigate this idea the researcher recruited 20 

participants who underwent a 6-month exercise training program. In order to 

determine whether inflammation had been reduced, he measured the 

inflammatory marker called CRP pre-training, 2 weeks into training and post-6-

months-training. 

 

Assumptions 

 The dependent variable is interval or ratio (continuous). (see our guide 

on Types of Variable) 

 Dependent variable is approximately normally distributed. (see SPSS 

article on Testing for Normality) 

 Sphericity (see our guide on Sphericity). 

 One independent variable where participants are tested on the same 

dependent variable at least 2 times. 
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Test Procedure in SPSS 

[To know how to correctly enter your data into SPSS in order to run a repeated 

measures ANOVA please read our Entering Data in SPSS tutorial.] 

1. Click Analyze > General Linear Model > Repeated Measures... on the 

top menu as shown below:  

 

Published with written permission from SPSS Inc, an IBM Company. 

2. You will be presented with the following screen:  

 

Published with written permission from SPSS Inc, an IBM Company. 

https://statistics.laerd.com/spss-tutorials/entering-data-in-spss-statistics.php#repeatedmeasures


3. In the "Within-Subject Factor Name:" replace "factor1" with a name that is 

more meaningful name for your independent variable.  In our example, we 

will call our within-subject factor name "time" as it represents the 

different times that we took CRP measurements from our participants (pre-

training, pre + 2 weeks and post-training).  

Enter into the "Number of Levels:" box the number of times the dependent 

variable has been measured. In this case, enter "3", representing pre-

training, pre + 2 weeks and post-training. 

Click the  button. 

Put an appropriate name for your dependent variable in the "Measure 

Name:" box. In this case we have labelled our dependent variable CRP. 

Click the  button. 

You will be presented with the diagram screen below: 

 

Published with written permission from SPSS Inc, an IBM Company. 

4. Click the   button and you will be presented with the following 

screen:  



 
Published with written permission from SPSS Inc, an IBM Company. 

5. Transfer "Pre_Training", "Week2" and "Post_Training" into the 

"Within-Subjects Variables (time):" box by either drag-and-dropping or 

using the  button. If you make a mistake you can use the  and 

 buttons to reorder your variables.  



 

Published with written permission from SPSS Inc, an IBM Company. 

6. Click the  button. You will be presented with the following 

screen:  

 

Published with written permission from SPSS Inc, an IBM Company. 



7. Transfer the "time" factor from the "Factors:" box into the "Horizontal 

Axis:" box by either drag-and-drop or the  button.  

Click the  button. You will be presented with the following screen: 

 

Published with written permission from SPSS Inc, an IBM Company. 

Click the  button. 

You will be presented with the following screen: 
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8. Click the   button. You will be presented with the following screen:  
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Published with written permission from SPSS Inc, an IBM Company. 

9. Transfer the factor "time" from the "Factor(s) and Factor Interactions:" 

box to the "Display Means for:" box.  

Tick the "Compare main effects" checkbox and select "Bonferroni" from the 

drop-down menu under "Confidence interval adjustment:". 

Tick the "Descriptive statistics" and "Estimates of effect size" checkboxes 

in the "Display" area. If you have done all this you will be presented with 

the following screen: 



 

Published with written permission from SPSS Inc, an IBM Company. 

Click the button. 

10. Click the button.  

SPSS Output 

SPSS will output a great many tables but for this analysis there are only four 

tables and one graph that we are interested in. We will go through these tables in 

order: 

Within-Subjects Factors Table 

This table reminds us of the levels of our independent variable (within-subject 

factor) and labels the time points 1, 2 and 3. We will need these labels later on 

when analysing our results in the Pairwise Comparisons table. Take care not to 

get confused with the "Dependent Variable" column in this table as it seems to 

suggest that the different time points are our dependent variable. This is not true 

- the column label is referring to fact that the dependent variable "CRP" is 

measured at each of these time points. 



 
Published with written permission from SPSS Inc, an IBM Company. 

Descriptive Statistics Table 

This table simply provides important descriptive statistics for this analysis as 

shown below: 

 
Published with written permission from SPSS Inc, an IBM Company. 

Mauchly's Test of Sphericity Table 

This table shows the results of Mauchly's Test of Sphericity which tests for one of 

the assumptions of the ANOVA with repeated measures, namely sphericity. It is 

important to look at this table as this assumption is commonly violated. 

 
Published with written permission from SPSS Inc, an IBM Company. 

We are interested in the Approx. Chi-Square value and its associated Sig. 

value. We can see from this example that the significance level is below 0.05 (it is 

< 0.0005). A significant value for Mauchly's Test of Sphericity indicates that the 

assumption of sphericity has been violated. Luckily, if this happens, methods 

have been developed that mean that we can still proceed with the test by using a 

correctional adjustment called Greenhouse-Geisser (a guide to sphericity can be 

found here). 

Tests of Within-Subjects Effects Table 

https://statistics.laerd.com/statistical-guides/sphericity-statistical-guide.php


This table tells us if there was an overall significant difference between the means 

at the different time points. 

 
Published with written permission from SPSS Inc, an IBM Company. 

From this table we are able to discover the F value for the "time" factor, its 

associated significance level and effect size (Partial Eta Squared). As our data 

violated the assumption of sphericity we look at the values in the Greenhouse-

Geisser row (as indicated in red in the screenshot). Had sphericity not been 

violated we would have looked under the Sphericity Assumed row. We can 

report that when using an ANOVA with repeated measures with a Greenhouse-

Geisser correction, the mean scores for CRP concentration were statistically 

significantly different (F(1.171, 22.257) = 21.032, P < 0.0005). 

Pairwise Comparisons Table 

The results presented in the previous table informed us that we have an overall 

significant difference in means but we do not know where those differences 

occurred. This table presents the results of the Bonferroni post-hoc test, which 

allows us to discover which specific means differed. Remember, if your overall 

ANOVA result was not significant then you should not examine the Pairwise 

Comparisons table. 
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Looking at the table above we need to remember the labels associated with the 

time points in our experiment from the Within-Subject Factors table. This table 

gives us the significance level for differences between the individual time points. 

We can see that there was a significant difference in CRP concentration between 

post-training and pre-training (P = 0.0005) and between post-training and after 2 

weeks of training (P = 0.001) but no significant differences between pre-training 

and after 2 weeks of training (P = 0.149). From the Mean Difference (I-J) 

column we can see that CRP concentration was significantly reduced at this time 

point. 

Profile Plot 

This plot is the last element to this analysis. We are only including it so that you 

can see some of the limitations of doing so in its current format. SPSS has means 

of altering graphs axes. This is important as these profile plots always tend to 

exaggerate the differences between means but choosing a y-axis range of values 

that is too narrow. In this case, it is known that most people has CRP 

concentrations ranging from 0 to 3 so the profile plot that you should produce 

should take this into consideration. However, this plot can be useful in gaining an 

easy understanding of the tabular results. 
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Reporting the Output 

A repeated measures ANOVA with a Greenhouse-Geisser correction determined 

that mean CRP concentration differed statistically significantly between time 

points (F(1.171, 22.257) = 21.032, P < 0.0005). Post hoc tests using the 

Bonferroni correction revealed that exercise training elciited a slight reduction in 

CRP concentration from pre-training to 2-weeks of training (3.09 ± 0.98 mg/L vs. 

2.97 ± 0.89 mg/L, respectively) which was not statistically significant (P = .149). 

However, post-training CRP had been reduced to 2.24 ± 0.50 mg/L which was 

statistically significantly different to pre-training (P < .0005) and 2-weeks training 

(P = .001) concentrations. We can, therefore, conclude that a long-term exercise 

training program (6 months) elicits a statistically significant reduction in CRP 

concentration but not after only 2 weeks of training. 

Two-way ANOVA using SPSS 
121  

Introduction 

The two-way ANOVA compares the mean differences between groups that have 

been split on two independent variables (called factors). You need two 

independent, categorical variables and one continuous, dependent variable (see 

our guide on Types of Variable). 

Assumptions 

https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics.php##
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 Dependent variable is either interval or ratio (continuous) (see our 

guide on Types of Variable) 

 The dependent variable is approximately normally distributed for each 

combination of levels of the two independent variables (see our Testing for 

Normality guide, which deals specifically with the two-way ANOVA). 

 Homogeneity of variances of the groups formed by the different 

combinations of levels of the two independent variables. 

 Independence of cases (this is a study design issue and is not addressed 

by SPSS). 

You will need to run statistical tests in SPSS to check all of these assumptions 

when carrying out a two-way ANOVA. If you do not run the statistical tests on 

these assumptions correctly, the results you get when running a two-way ANOVA 

might not be valid. If you are unsure how to do this correctly, we show you how, 

step-by-step in our Premium guide. To learn about the Premium guide for two-

way ANOVA, click here. To learn more about our Premium site in general, where 

access starts from just $3.99/£2.99/€3.99, Take the Tour. 

Example 

A researcher was interested in whether an individual's interest in politics was 

influenced by their level of education and their gender. They recruited a random 

sample of participants to their study and asked them about their interest in 

politics, which they scored from 0 - 100 with higher scores meaning a greater 

interest. The researcher then divided the participants by gender (Male/Female) 

and then again by level of education (School/College/University). 

Setup in SPSS 

In SPSS we separated the individuals into their appropriate groups by using two 

columns representing the two independent variables and labelled them "Gender" 

and "Edu_Level". For "Gender", we coded males as "1" and females as "2", and 

for "Edu_Level", we coded school as "1", college as "2" and university as "3". 

The participants interest in politics was entered under the variable name, 

"Int_Politics". To know how to correctly enter your data into SPSS in order to 

run a two-way ANOVA, please read our Entering Data in SPSS tutorial, where 

there is a specific example. The data setup can be seen in the diagram below 

(click image to see full data set). We have given our data text labels (see our 

Working with Variables guide). 
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Testing of Assumptions 

To determine whether your dependent variable is normally distributed for each 

combination of the levels of the two independent variables see our Testing for 

Normality guide that runs through how to test for normality using SPSS using a 

specific two-way ANOVA example. In SPSS, homogeneity of variances is tested 

using Levene's Test for Equality of Variances. This is included in the main 

procedure for running the two-way ANOVA, so we get to evaluate whether there 

is homogeneity of variances at the same time as we get the results from the two-

way ANOVA. 

Test Procedure in SPSS 

1. Click Analyze > General Linear Model > Univariate... on the top menu 

as shown below:  
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2. You will be presented with the "Univariate" dialogue box:  
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3. You need to transfer the dependent variable "Int_Politics" into the 

"Dependent Variable:" box and transfer both independent variables, 

"Gender" and "Edu_Level", into the "Fixed Factor(s):" box. You can do 

this by drag-and-dropping the variables into the respective boxes or by 

using the button. If you are using older versions of SPSS you will need 

to use the former method. The result is shown below:  

[For this analysis you will not need to worry about the "Random 

Factor(s):", "Covariate(s):" or "WLS Weight:" boxes.]  
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4. Click on the button. You will be presented with the "Univariate: 

Profile Plots" dialogue box:  
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5. Transfer the independent variable "Edu_Level" from the "Factors:" box 

into the "Horizontal Axis:" box and transfer the "Gender" variable into the 

"Separate Lines:" box. You will be presented with the following screen:  

[Tip: Put the independent variable with the greater number of levels in the 

"Horizontal Axis:" box.] 
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6. Click the button. 
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You will see that "Edu_Level*Gender" has been added to the "Plots:" 

box. 

7. Click the button. This will return you to the "Univariate" dialogue 

box. 

8. Click the button. You will be presented with the "Univariate: Post 

Hoc Multiple Comparisons for Observed..." dialogue box as shown below:  
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Transfer "Edu_Level" from the "Factor(s):" box to the "Post Hoc Tests 

for:" box. This will make the "Equal Variances Assumed" section become 

active (loose the "grey sheen") and present you with some choices for 

which post-hoc test to use. For this example, we are going to select 

"Tukey", which is a good, all-round post-hoc test. 

[You only need to transfer independent variables that have more than two 

levels into the "Post Hoc Tests for:" box. This is why we do not transfer 

"Gender".] 

You will finish up with the following screen: 
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Click the button to return to the "Univariate" dialogue box.  

9. Click the button. This will present you with the "Univariate: 

Options" dialogue box as shown below:  
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10. Transfer "Gender", "Edu_Level" and "Gender*Edu_Level" from the 

"Factor(s) and "Factor Interactions:" box into the "Display Means for:" box. 

In the "Display" section, tick the "Descriptive Statistics" and "Homogeneity 

tests" options. You will presented with the following screen:  
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Click the button to return to the "Univariate" dialogue box. 

11. Click the button to generate the output.  

Go to the next page for the SPSS output, simple effects analysis and an 

explanation of the output. 

Two-way ANOVA using SPSS (cont...) 
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SPSS Output of Two-way ANOVA 

SPSS produces many tables in its output from a two-way ANOVA and we are 

going to start with the "Descriptives" table as shown below: 

https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics-2.php
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This table is very useful as it provides the mean and standard deviation for the 

groups that have been split by both independent variables. In addition, the table 

also provides "Total" rows, which allows means and standard deviations for 

groups only split by one independent variable or none at all to be known. 

Levene's Test of Equality of Error Variances 

The next table to look at is Levene's Test of Equality of Error Variances as shown 

below: 
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From this table we can see that we have homogeneity of variances of the 

dependent variable across groups. We know this as the Sig. value is greater than 

0.05, which is the level we set for alpha. If the Sig. value had been less than 

0.05 then we would have concluded that the variance across groups was 

significantly different (unequal). 

Tests of Between-Subjects Effects Table 

This table shows the actual results of the two-way ANOVA as shown below: 
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We are interested in the Gender, Edu_Level and Gender*Edu_Level rows of the 

table as highlighted above. These rows inform us of whether we have significant 

mean differences between our groups for our two independent variables, Gender 

and Edu_Level, and for their interaction, Gender*Edu_Level. We must first look at 

the Gender*Edu_Level interaction as this is the most important result we are 

after. We can see from the Sig. column that we have a statistically significant 

interaction at the P = .014 level. You may wish to report the results of Gender 

and Edu_Level as well. We can see from the above table that there was no 

significant difference in interest in politics between Gender (P = .207) but there 

were significant differences between educational levels (P < .0005). 

Multiple Comparisons Table 

This table shows the Tukey post-hoc test results for the different levels of 

education as shown below: 
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We can see form the above table that there is some repetition of the results but, 

regardless of which row we choose to read from, we are interested in the 

differences between (1) School and College, (2) School and University, and (3) 

College and University. From the results we can see that there is a significant 

difference between all three different combinations of educational level (P < 

.0005). 

Plot of the Results 

The following plot is not of sufficient quality to present in your reports but 

provides a good graphical illustration of your results. In addition, we can get an 

idea of whether there is an interaction effect by inspecting whether the lines are 

parallel or not. 
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From this plot we can see how our results from the previous table might make 

sense. Remember that if the lines are not parallel then there is the possibility of 

an interaction taking place. 

Procedure for Simple Main Effects in SPSS 

You can follow up the results of a significant interaction effect by running tests for 

simple main effects - that is, the mean difference in interest in politics between 

genders at each education level. SPSS does not allow you to do this using the 



graphical interface you will be familiar with, but requires you to use syntax. We 

explain how to do this below: 

1. Click File > New > Syntax from the main menu as shown below:  
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2. You will be presented with the Syntax Editor as shown below:  
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3. Type text into the syntax editor so that you end up with the following (the 

colours are automatically added):  

[Depending on the version of SPSS you are using you might have 

suggestion boxes appear when you type in SPSS-recognised commands, 

such as, UNIANOVA. If you are familiar with using this type of auto-

prediction then please feel free to do so, but otherwise simply ignore the 

pop-up suggestions and keep typing normally.] 
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Basically, all text you see above that is in CAPITALS, is required by SPSS 

and does not change when you enter your own data. Non-capitalised text 

represents your variables and will change when you use your own data. 

Breaking it all down, we have: 

UNIANOVA 
Tells SPSS to use the Univariate Anova 

command 

Int_Politics BY Gender Edu_Level 

Your dependent variable BY your two 

independent variables (with a space 

between them) 

/EMMEANS 
Tells SPSS to calculate estimated 

marginal means 

TABLES(Gender*Edu_Level) 

Generate statistics for the interaction 

term. Put your two independent 

variables here, separated by a * to 

denote an interaction 

COMPARE(Gender) 
Tells SPSS to compare the interaction 

term between genders 

4. Making sure that the cursor is at the end of row 2 in the syntax editor click 

the button, which will run the syntax you have typed. Your results 

should appear in the Output Viewer below the results you have already 

generated.  



SPSS Output of Simple Main Effects 

The table you are interested in is the Univariate Tests table: 

 
Published with written permission from SPSS Inc, an IBM Company. 

This table shows us whether there are statistical differences in mean political 

interest between gender for each educational level. We can see that there are no 

statistically significant mean differences between male and females' interest in 

politics when individuals are educated to school (P = .465) or college level (P = 

.793). However, when individuals are educated to University level, there are 

significant differences between males and females' interest in politics (P = .002). 

Reporting the results of a two-way ANOVA 

You should emphasize the results from the interaction first, before you mention 

the main effects. In addition, you should report whether your dependent variable 

was normally distributed for each group and how you measured it (we will 

provide an example below). 

A two-way ANOVA was conducted that examined the effect of gender and 

education level on interest in politics. Our dependent variable, interest in politics, 

was normally distributed for the groups formed by the combination of the levels 

of education level and gender as assessed by the Shapiro-Wilk test. There was 

homogeneity of variance between groups as assessed by Levene's test for 

equality of error variances. There was a significant interaction between the effects 

of gender and education level on interest in politics, F (2, 54) = 4.643, P = .014. 

Simple main effects analysis showed that there males were significantly more 

interested in politics than females when educated to University level (P = .002) 

but there were no differences between gender when educated to school (P = 

.543) or college level (P = .793). 

If you have found this article useful, but want to ensure that you haven't missed 

anything, or failed the assumptions vital to correctly run a two-way ANOVA, you 

can learn about the Premium guide for two-way ANOVA here. To learn more 

about our Premium site in general, which you can gain access to from just 

$3.99/£2.99/€3.99, Take the Tour. 
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One-way MANOVA using SPSS 
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Introduction 

The one-way MANOVA is used to determine whether there are any differences 

between independent groups on more than one continuous dependent variable. 

In this regard, it differs from a one-way ANOVA only in measuring more than one 

dependent variable at the same time, unlike the one-way ANOVA that only 

measures one dependent variable. 

Assumptions 

 One independent variable consists of two or more categorical 

independent groups. 

 Two or more dependent variables that are either interval or ratio 

(continuous) (see our guide on Types of Variable). 

 Multivariate Normality 

 Equality of variances between the independent groups (homogeneity of 

variances). 

 Independence of cases. 

Example 

A high school takes its intake from three different primary schools. A teacher was 

concerned that, even after a few years, there were academic differences between 

the pupils from the different schools. As such, she randomly selected 20 pupils 

from School A, 20 pupils from School B and 20 pupils from School C and 

measured their academic performance as assessed by the marks they received 

for their end-of-year English and Maths exams. 

Setup in SPSS 

The independent variable separating boys and girls has been labelled "Gender" 

with "Male" and "Female" categories. The dependent variables, English and 

Maths exam mark, were labelled "English_Score" and "Maths_Score", 

respectively. To know how to correctly enter your data into SPSS in order to run a 

one-way MANOVA please read our Entering Data in SPSS tutorial. 

Test Procedure in SPSS 

1. Click Analyze > General Linear Model > Mulivariate... on the top 

menu as shown below:  
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2. You will be presented with the Multivariate dialogue box:  
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3. Transfer the independent variable, "School", into the "Fixed Factor(s):" 

box and transfer the dependent variables, "English_Score" and 

"Maths_Score", into the "Dependent Variables:" box. You can do this by 

drag-and-dropping the variables into their respective boxes or by using the 

button. For older versions of SPSS, you will need to use the latter 

method. The result is shown below: button. If you are using older versions 

of SPSS you will need to use the former method. The result is shown 

below:  

[For this analysis, you will not need to use the "Covariate(s):" (used for 

MANCOVA) or "WLS Weight:" boxes.]  
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4. Click on the button. You will be presented with the Multivariate: 

Profile Plots dialogue box:  
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5. Transfer the independent variable, "School", into the "Horizontal Axis:" 

box, as shown below:  
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6. Click the button. You will see that "School" has been added to the 

"Plots:" box, as shown below: 
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7. Click the button. This will return you to the Multivariate dialogue 

box. 

8. Click the button. You will be presented with the Multivariate: 

Post Hoc Multiple Comparisons for Observed... dialogue box, as 

shown below:  
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9. Transfer the independent variable, "School", into the "Post Hoc Tests for:" 

box and select the "Tukey" checkbox in the "Equal Variances Assumed" 

area, as shown below:  

[You can select other post-hoc tests depending on your data and study 

design. If your independent variable only has two levels/categories, you do 

not need to complete this post-hoc section.]  
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10. Click the button. This will return you to the Multivariate dialogue 

box.  

11. Click the button. This will present you with the Multivariate: 

Options dialogue box, as shown below:  
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12. Transfer the independent variable, "School", from the "Factor(s) and 

Factor Interactions:" box into the "Display Means for:" box. Select the 

"Descriptive statistics", "Estimates of effect size", "Observed power" and 

"Homogeneity tests" checkboxes in the "Display" area. You will be 

presented with the following screen:  
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13. Click the button. This will return you to the Multivariate dialogue 

box.  

14. Click the button to generate the output.  

Go to the next page for the SPSS output and explanation of the output. 

 

 

One-way MANOVA using SPSS (cont...) 
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SPSS Output of One-way MANOVA 

SPSS produces many different tables. The first important one is the Descriptive 

Statistics table shown below. This table is very useful as it provides the mean 

and standard deviation for the two different dependent variables, that have been 

split by the independent variable. In addition, the table also provides "Total" 

rows, which allows means and standard deviations for groups only split by the 

dependent variable to be known. 

https://statistics.laerd.com/spss-tutorials/one-way-manova-using-spss-statistics-2.php
https://statistics.laerd.com/
https://statistics.laerd.com/
https://statistics.laerd.com/spss-tutorials/one-way-manova-using-spss-statistics-2.php##


 
Published with written permission from SPSS Inc, an IBM Company. 

Homogeneity of Covariances 

One of the assumptions of the MANOVA is homogeneity of covariances, which is 

tested for by Box's Test of Equality of Covariance Matrices. If the "Sig." 

value is less than .001 (P < .001) then the assumption of homogeneity of 

covariances was violated. However, we can see from the table below that, in this 

case, we did not violate this assumption (P = .064). 
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[For this analysis, you will not need to use the "Covariate(s):" (used for 

MANCOVA) or "WLS Weight:" boxes.]  

Multivariate Tests 

The Multivariate Tests table is where we find the actual result of the one-way 

MANOVA. You need to look at the second Effect, labelled "School", and the Wilks' 

Lambda row (highlighted in red). To determine whether the one-way MANOVA 

was statistically significant you need to look at the "Sig." column. We can see 

from the table that we have a "Sig." value of .000, which means P < .0005. 

Therefore, we can conclude that this school's pupils academic performance was 

significantly dependent on which prior school they had attended (P < .0005). 
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Reporting the Result (without follow-up tests) 

You could report the result of this test as follows: There was a statistically 

significant difference between a pupils prior school on their academic 

performance, F (3, 112) = 13.74, P < .0005; Wilk's λ = 0.450, partial ε2 = .33. 

If you had not achieved a statistically significant result then you would not 

perform any further follow-up tests. However, as our case shows that we did, we 

will continue with further tests. 

Follow-up Tests - Univariate ANOVAs 

To determine how the dependent variables differ for the independent variable we 

need to look at the Tests of Between-Subjects Effects Table but firstly we 

need to check for homogeneity of variances, which we can do by referring to 

Levene's Test of Equality of Error Variances Table, as shown below: 
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We can see from the table above that both the Maths and English scores have 

homogeneity of variances (P > .05) (the last column in the table). The results of 

the ANOVAs for our dependent variables are presented in the Tests of Between-

Subjects Effects, as shown below (highlighted in red): 
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We can see from this table that prior schooling has a statistically significant effect 

on both English (F (2, 57) = 18.11; P < .0005; partial ε2 = .39) and Maths scores 

(F (2, 57) = 14.30; P < .0005; partial ε2 = .33). It is important to note that you 

should make an alpha correction to account for multiple ANOVAs being run, such 

as a Bonferroni correction. As such, in this case, we accept statistical significance 

at P < .025. We can follow up these significant ANOVAs with Tukey's HSD post-

hoc tests, as shown below in the Multiple Comparisons Table: 
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The table above shows that for mean scores for English were statistically 

significantly different between School A and School B (P < .0005), and School A 

and School C (P < .0005) but not between School B and School C (P = .897). 

Mean Maths scores were statistically significantly different between School A and 

School C (P < .0005), and School B and School C (P = .001) but not between 

School A and School B (P = .443). These differences can be easily visualised by 

the plots generated by this procedure, as shown below:  
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Mann-Whitney U Test using SPSS 
46  

Objectives 

The Mann-Whitney U Test is used to compare differences between two 

independent groups when the dependent variable is either (a) ordinal or (b) 

interval but not normally distributed. It is the nonparametric alternative to the 

independent t-test. 

Assumptions 

 Random samples from populations 

 The dependent variable is either ordinal, interval or ratio (see our Types 

of Variable guide for help) 

 Samples do NOT need to be normally distributed 

Example 

A random sample of overweight, male individuals were recruited to a study to 

investigate whether an exercise or weight loss intervention would be more 

effective at lowering blood cholesterol levels in overweight men. To this end, 

researchers randomly split their sample group into two equally-sized, smaller 
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groups; one group underwent an exercise training programme and the other 

group undertook a calorie-controlled, weight-loss diet. In order to determine 

which treatment programme (exercise or diet) was more effective, cholesterol 

concentrations were compared between the two groups at the end of the 

treatment programmes. 

Setup in SPSS 

In SPSS we separated the groups for analysis by creating a grouping variable 

called "Group" and gave the exercise group a value of "1" and the diet group a 

value of "2". Cholesterol concentrations were entered under the variable name 

"Cholesterol". To correctly setup your data in SPSS to run a Mann-Whitney U 

Test please read our Entering Data in SPSS tutorial. 

Testing Assumptions 

Cholesterol concentration is measured on a continuous measurement scale 

(specifically, a ratio scale) and thus meets the variable requirements for this test. 

However, having tested the normality of the cholesterol data in the two 

treatments we have been able to conclude that one of the groups is not normally 

distributed. Therefore, we cannot use an Independent T-Test and have decided to 

run a Mann-Whitney U Test. The procedure for checking the normality of your 

data is provided in our Testing for Normality guide. 

Test Procedure in SPSS 

1. Click Analyze > Nonparametric Tests > Legacy Dialogs > 2 

Independent Samples... on the top menu as shown below:  
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2. You will be presented with the following screen:  
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3. Move the dependent variable "Cholesterol" to the "Test Variable List:" 

box and the independent variable "Group" to the "Grouping Variable:" 

box by using the button or by dragging-and-dropping the variables into 

the boxes. 
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4. Make sure that the "Mann-Whitney U" checkbox is ticked in the "Test 

Type" area and the "Grouping Variable:" box is highlighted in yellow (as 



seen above). If not highlighted in yellow, simply click your cursor in the 

box.  

5. Click on the button. The button will not be clickable if you 

have not highlighted the "Grouping Variable:" box as instructed in Point 4. 

You will be presented with the following screen:  
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Click through to the next page for the remaining procedure and how to interpret 

the output.  

Mann-Whitney U Test using SPSS (cont...) 
25  

6. Enter the values "1" and "2" into the "Group 1:" and "Group 2:" boxes. 
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Click on the button. 

[What are these numbers and why do I have to enter them? The numbers 

represent the labels we gave to the exercise and diet treatment groups, 

respectively. The reason SPSS asks you to enter them is because you 

might have more than two groups and you want to analyse multiple 

combinations of groups (SPSS does not automatically analyse all 

combinations of all groups). For example, your categories could be 

exercise (label = 1), diet (label = 2) and drugs (label = 3) and, if you 

wanted to compare exercise to drugs you would enter "1" and "3" into the 

Group boxes.]  
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7. If you wish to use this procedure to generate some descriptive statistics 

then click on the button and then tick "Descriptive" and 

"Quartiles" within the "Statistics" area. You will be presented with the 

dialog box below:  
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Click the button, which will bring you back to the main dialog box 

with the "Grouping Variable:" box now completed as shown below: 
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8. Click the button, which will get SPSS to generate the output for the 

Mann-Whitney U Test.  

Ouput and Interpretation 



SPSS will produce three tables of output from running a Mann-Whitney U Test as 

will be described in the next three sections. 

Descriptives 

The Descriptives output table looks as follows: 
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Although we have decided to show you how you can get SPSS to provide 

descriptive statistics for the Mann-Whitney U Test they are not actually very 

useful. The reason for this is two-fold. Firstly, in order to compare the groups we 

need the individual group values not the amalgamated ones. This table does not 

provide us with this vital information, so we cannot compare any possible 

differences between the exercise and diet groups. Secondly, we chose the Mann-

Whitney U Test because one of the individual groups (exercise group) was not 

normally distrbuted. However, we have not tested to see if the amalgamation of 

the two groups results in the larger group being normally distributed. Therefore, 

we do not know whether to use the mean and standard deviation or the median 

and interquartile range (IQR). The IQR is the 25th to 75th percentile. This will act 

as a surrogate to the standard deviation we would otherwise report if the data 

were normally distributed. We recommend that you ignore this table. 

Ranks Table 

This is the first table that provides information regarding the ouput of the actual 

Mann-Whitney U Test. It shows mean rank and sum of ranks for the two groups 

tested (exercise and diet treatment groups) as shown below: 
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The above table is very useful as it indicates which group had the highest 

cholesterol concentration; namely, the group with the highest mean rank. In this 

case, the diet group had the highest cholesterol concentrations. 

Test Statistics Table 



This table shows us the actual significance value of the test (see below). 

Specifically, the "Test Statistics" table provides the test statistic, U, value as well 

as the asymptotic significance (2-tailed) p-value. 
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From this data it can be concluded that there is a statistically significant 

difference between the exercise and diet treatment group's median cholesterol 

concentration at the end of both treatments (U = 110, p = 0.014). It can be 

further concluded that the exercise treatment elicited statistically significant lower 

cholesterol concentrations than the dietary group (p = 0.014). 

How to run a Mann-Whitney test using SPSS's new nonparametric procedure is 

explained in our Premium articles; find out more here. 

Wilcoxon Signed Rank Test using SPSS 
51  

Overview 

The Wilcoxon Signed-Rank Test is the nonparametric test equivalent to the 

dependent t-test. It is used when we wish to compare two sets of scores that 

come from the same participants. This can occur when we wish to investigate any 

change in scores from one time point to another or individuals are subjected to 

more than one condition. As the Wilcoxon Signed-Ranks Test does not assume 

normality in the data it can be used when this assumption has been violated and 

the use of the dependent t-test is inappropriate. 

Example 

A pain researcher is interested in finding methods to reduce lower back pain in 

individuals without having to use drugs. The researcher thinks that having 

acupuncture in the lower back might reduce back pain. To investigate this, the 

researcher recruits 25 participants to their study. At the beginning of the study, 

the researcher asks the participants to rate their back pain on a scale of 1 to 10 

with 10 indicating the greatest level of pain. After 4 weeks of twice weekly 

acupuncture the participants are asked again to indicate their level of back pain 

on a scale of 1 to 10 with 10 indicating the greatest level of pain. The researcher 
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wishes to understand whether the participants' pain levels changed after they had 

undergone the acupuncture so they run a Wilcoxon Signed-Rank Test. 

Assumptions 

 One dependent variable that is either ordinal, interval or ratio (see our 

Types of Variable guide). 

 One independent variable that consists of one group or two "matched-

pairs" groups. 

Test Procedure in SPSS 

1. Click Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related 

Samples... on the top menu in Version 18.0 of SPSS. 

For older versions of SPSS, click Analyze > Nonparametric Tests > 

Related Samples....  
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2. You will be presented with the following:  
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3. Transfer the variables you are interested in analyzing into the "Test Pairs:" 

box. In our example, we need to transfer the variables Pain_Score_Pre 

and Pain_Score_Post, which represent the Pain Scores before and after 

the acupuncture intervention, respectively. There are two ways to do this. 

You can either (1) highlight both variables (use the cursor and hold down 

the shift key) and then press the button or (2) you can drag-and-drop 

each variable into the boxes. Make sure that the "Wilcoxon" checkbox is 

ticked in the "Test Type" box.  

You will end up with a screen similar to the one below: 
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 button shifts the pair of variables you have highlighted down one 

level. 

 button shifts the pair of variables you have highlighted up one level. 

button shifts the order of the variables with a variable pair itself. 

4. If you want to generate descriptives or quartiles for your variables then 

select them by clicking the  button and ticking the "Descriptive" 

and "Quartiles" checkboxes under the "Statistics" box. You can also decide 

how to deal with missing values.  

You will end up with a screen similar to the one below: 
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Click on the  button. 

5. Click on the  button to generate the output.  

SPSS Output of the Wilcoxon Signed Rank Test 

You will be presented with some tables in the Output Viewer under the title NPar 

Tests. 

Descriptives Table 

The first table titled Descriptive Statistics is where SPSS has generated 

descriptive and quartile statistics for your variables if you selected these options. 

If you did not select these options, this table will not appear in your results. You 

can use the results from this table to describe the Pain Score scores before and 

after the acupuncture treatment. As you have used a nonparametric test it is 

most likely that you should use the quartiles information to describe both your 

groups. 
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Ranks Table 

The Ranks table provides some interesting data on the comparison of 

participant's Before (Pre) and After (Post) Pain Score score. We can see from the 

table's legend that 11 participants had a higher pre-acupucture treatment Pain 

Score than after their treatment. However, 4 participants had a higher Pain Score 

after treatment and 10 participants saw no change in their Pain Score. 
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Test Statistics Table 

By examining the final Test Statistics table we can discover whether these 

changes, due to acupuncture treatment, led overall to a statistically significant 

difference in Pain Scores. We are looking for the Asymp. Sig. (2-tailed) value, 



which in this case is 0.071. This is the P value for the test. In statistics, the 

Wilcoxon Signed Ranks Test is denoted by the test statistic T although we can 

report the Z statistic instead. 
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We could, therefore, report our results as follows: 

A Wilcoxon Signed Ranks Test showed that a 4 week, twice weekly acupuncture 

treatment course did not elicit a statistically significant change in lower back pain 

in individuals with existing lower back pain (Z = -1.807, P = 0.071). Indeed, 

median Pain Score rating was 5.0 both pre- and post-treatment. 

Kruskal-Wallis H Test using SPSS 
44  

Overview 

The Kruskal-Wallis Test is the nonparametric test equivalent to the one-way 

ANOVA and an extension of the Mann-Whitney Test to allow the comparison of 

more than two independent groups. It is used when we wish to compare three or 

more sets of scores that come from different groups. 

Common Uses 

As the Kruskal-Wallis Test does not assume normality in the data and is much 

less sensitive to outliers it can be used when these assumption have been 

violated and the use of the one-way ANOVA is inappropriate. In addition, if your 

data is ordinal then you cannot use a one-way ANOVA but you can use this test. 

Example 

A medical researcher has heard anecdotal evidence that certain anti-depressive 

drugs can have the positive side-effect of lowering neurological pain in those 

individuals with chronic, neurological back pain when administered in doses lower 

than those prescribed for depression. The medical researcher would like to 

investigate this anecdotal evidence with a study. The researcher identifies 3 well-

known, anti-depressive drugs which might have this positive side-effect and 

labels them Drug A, Drug B and Drug C. The researcher then recruits a group of 

60 individuals with a similar level of back pain and randomly assigns them to one 

of three groups - Drug A, Drug B or Drug C treatment groups and prescribes the 

relevant drug for a 4 week period. At the end of the 4 week period, the 

researcher asks the participants to rate their back pain on a scale of 1 to 10 with 

10 indicating the greatest level of pain. The researcher wishes to compare the 
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levels of pain experienced by the different groups at the end of the drug 

treatment period. The researcher runs a Kruskal-Wallis Test to compare this 

ordinal, dependent measure (Pain Score) between the three drug treatments 

(independent variable is the type of drug, with more than two groups). 

Assumptions 

 One dependent variable that is ordinal, interval or ratio (see our guide 

on types of variable). 

 One independent variable that consists of three or more independent 

groups. 

Test Procedure in SPSS 

1. Click Analyze > Nonparametric Tests > Legacy Dialogs > K 

Independent Samples... on the top menu as shown below:  
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2. You will be presented with the following:  
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3. Transfer the dependent variable that you are interested in analyzing into 

the "Test Variable List:" box. In our example, we need to transfer the 

variable Pain_Score into this box. The independent variable needs to be 

transfered into the "Grouping Variable:" box. There are two ways transfer 

your variables. You can either highlight drag-and-drop each variable into 

the respective boxes or you highlight the variable by using the cursor and 

clicking the button. Make sure that the "Kruskal-Wallis H" checkbox is 

ticked in the "Test Type" box. 

 

You will end up with a screen similar to the one below:  
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4. You will be presented with the following:  
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5. Transfer the dependent variable that you are interested in analyzing into 

the "Test Variable List:" box. In our example, we need to transfer the 

variable Pain_Score into this box. The independent variable needs to be 

transfered into the "Grouping Variable:" box. There are two ways transfer 



your variables. In this case, this means transfering the Drug Treatment 

Group variable into this box. You can either drag-and-drop each variable 

into the respective boxes or you can highlight the variable by using the 

cursor and clicking the button. Make sure that the "Kruskal-Wallis H" 

checkbox is ticked in the "Test Type" box. 

 

You will end up with a screen similar to the one below:  
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6. Press the button and type "1" into the "Minimum" box and 

"3" into the "Maximum" box. This is defining the range of the values for 

the categories of the independent variables. In this case there are 3 

groups/categories called Drug A, Drug B and Drug C. If there had been 4 

groups but you did not want to include the first group in the analysis then 

you would have entered "2" and "4" into the "Minimum" and "Maximum" 

boxes, respectively (assuming you ordered the groups numerically).  
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Click the button. 

7. Click the button. Tick the "Descriptive" checkbox if you want 

descriptives and/or "Quartiles" if you want quartiles. You will be presented 

with the following if you select Descriptives:  
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Click the button. 

SPSS Output for the Kruskal-Wallis H Test 

You will be presented with the following output (Descriptives excluded): 
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The Ranks table shows the mean rank of the Pain_Score for each drug group. The 

Test Statistics table presents the Chi-square value (Kruskal-Wallis H), the 

degrees of freedom and the significance level. 

Reporting the Output of the Kruskal-Wallis H Test 

In our example, we can report that there was a statistically significant difference 

between the different drug treatments (H(2) = 8.520, P = 0.014) with a mean 

rank of 35.33 for Drug A, 34.83 for Drug B and 21.35 for Drug C. 

How to run a Kruskal-Wallis test using SPSS's new nonparametric procedure 

along with post-hoc tests to determine where differences lie is explained in our 

Premium articles; find out more here. 

Friedman Test in SPSS 
40  

Overview 

The Friedman Test is the non-parametric alternative to the one-way ANOVA with 

repeated measures. It is used to test for differences between groups when the 

dependent variable being measured is ordinal. It can also be used for continuous 

data that has violated the assumptions necessary to run the one-way ANOVA with 

repeated measures; for example, marked deviations from normality. 

Assumptions 

 One group that is measured on three or more different occasions. 

 Group is a random sample from the population. 

 One dependent variable that is either ordinal, interval or ratio (see our 

Types of Variable guide). 

 Samples do NOT need to be normally distributed. 

Example 

A researcher wishes to examine whether music has an effect on the perceived 

psychological effort required to perform an exercise session. To test this, the 

researcher recruits 12 runners who each run three times on a treadmill for 30 

minutes long and conducted at the same running speed. Each subject runs once 

listening to no music at all, runs once listening to classical music and runs 

another listening to dance music, in a random order. At the end of each run, 

subjects are asked to record how hard the running session felt on a scale of 1 to 

10, with 1 being easy and 10 extremely hard. A Friedman test is then run to see 

if there are differences between the music type on perceived effort. 

Setting Up Your Data in SPSS 

SPSS puts all repeated measures data on the same row in its Data View and, 

therefore, you will need as many variables as related groups. In our example, we 

need three variables, which we have labelled "none", "classical" and "dance" to 

represent the subjects' perceived effort of the run when listening to the different 

types of music. 
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Testing of Assumptions 

The Friedman Test procedure in SPSS will not test any of the assumptions that 

are required for this test. In most cases this is because the assumptions are a 

methodological or study design issue and not what SPSS is designed for. In the 

case of assessing the types of variable you are using, SPSS will not provide you 

with any errors if you incorrectly label your variables as nominal. 

Friedman Test Procedure in SPSS 

1. Click Analyze > Nonparametric Tests > Legacy Dialogs > K Related 

Samples... on the top menu as shown below: (ignore Legacy Dialogs if on 

a previous version to SPSS 18.0) 
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2. You will be presented with the following screen:  
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3. Move the dependent variables "none", "classical" and "dance" to the 

"Test Variables:" box by using the button or by dragging-and-dropping 

the variables into the box. You will end up with the following:  
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4. Make sure that "Friedman" is selected in the "Test Type " option area. 

5. Click the button. You will be presented with the following screen: 
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6. Tick the "Quartiles" option: [It is most likely that you will only want to 

include the "Quartiles" option as your data is probably unsuitable for 

"Descriptives", hence why you are running a non-parametric test. 

However, SPSS includes this option anyway.] 
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7. Click the button. This will return you back to the main dialogue 

box: 
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8. Click the button to run the Friedman Test. 

SPSS Output for the Friedman Test 



SPSS will generate two or three tables depending on whether you selected to 

have descriptives and/or quartiles generated in addition to running the Friedman 

Test. 

Descriptive Statistics Table 

The following table will be produced if you selected the Quartiles option: 
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This is a very useful table as it can be used to present descriptive statistics in 

your results section for each of the time points or conditions (depending on your 

study design) for your dependent variable. This usefulness will be presented later 

on in this guide, in the "Reporting the Output" section. 

Ranks Table 

The Ranks table shows the mean rank for each of the related groups, as shown 

below: 
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The Friedman Test compares the mean ranks between the related groups and 

indicates how the groups differed and it is included for this reason. However, you 

are not very likely to actually report these values in your results section but most 

likely will report the median value for each related group. 

Test Statistics Table 

This is the table which informs you of the actual result of the Friedman Test and 

whether there was an overall statistically significant difference between the mean 

ranks of your related groups. For the example used in this guide, the table looks 

as follows: 
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The above table provides the test statistic (χ2) value (Chi-square), degrees of 

freedom (df) and the significance level (Asymp. Sig.), which is all we need to 

report the result of the Friedman Test. We can see, from our example, that there 

is an overall statistically significant difference between the mean ranks of the 

related groups. It is important to note that the Friedman Test is an omnibus test 

like its parametric alternative - that is, it tells you whether there are overall 

differences but does not pinpoint which groups in particular differ from each 

other. To do this you need to run post-hoc tests, which will be discussed after the 

next section. 

Reporting the Output of the Friedman Test (without post-hoc tests) 

You can report the Friedman Test result as follows: There was a statistically 

significant difference in perceived effort depending on which type of music was 

listened to whilst running, χ2(2) = 7.600, P = 0.022. 

You could also include the median values for each of the related groups. 

However, at this stage, you only know that there are differences somewhere 

between the related groups but you do not know exactly where those differences 

lie. Remember though, that if your Friedman Test result was not statistically 

significant then you should not run post-hoc tests. 

Post-hoc Tests 

To examine where the differences actually occur, you need to run separate 

Wilcoxon Signed-Rank Tests on the different combinations of related groups. So, 

in this example, you would compare the following combinations: 

1. None to Classical 

2. None to Dance 

3. Classical to Dance 

You need to use a Bonferroni adjustment on the results you get from the 

Wilcoxon tests as you are making multiple comparisons, which makes it more 

likely that you will declare a result significant when you should not (a Type I 

error). Luckily, the Bonferroni adjustment is very easy to calculate; simply take 

the significance level you were initially using (in this case 0.05) and divide it by 

the number of tests you are running. So in this example, we have a new 

significance level of 0.05/3 = 0.017. This means that if the P value is larger than 

0.017 then we do not have a statistically significant result. 

Running these tests (see how with our Wilcoxon Signed-Rank Test guide) on the 

results from this example then you get the following result: 
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This table shows the output of the Wilcoxon Signed-Rank Test on each of our 

combinations. It is important to note that the significance values have not been 

adjusted in SPSS to compensate for multiple comparisons - you must manually 

compare the significance values produced by SPSS to the Bonferroni-adjusted 

significance level you have calculated. We can see that at the P < 0.017 

significance level only perceived effort between no music and dance (dance-none, 

P = 0.008) was statistically significantly different. 

Reporting the Output of the Friedman Test (with post-hoc tests) 

You can report the Friedman Test with post-hoc tests results as follows: There 

was a statistically significant difference in perceived effort depending on which 

type of music was listened to whilst running, χ2(2) = 7.600, P = 0.022. Post-hoc 

analysis with Wilcoxon Signed-Rank Tests was conducted with a Bonferroni 

correction applied, resulting in a significance level set at P < 0.017. Median (IQR) 

perceived effort levels for the no-music, classical and dance music running trial 

were 7.5 (7 to 8), 7.5 (6.25 to 8) and 6.5 (6 to 7), respectively. There were no 

significant differences between the no-music and classical music running trials (Z 

= -0.061, P = 0.952) or between the classical and dance music running trials (Z 

= -1.811, P = 0.070) despite an overall reduction in perceived effort in the dance 

vs. classical running trials. However, there was a statistically significant reduction 

in perceived effort in the dance music vs. no music trial (Z = -2.636, P = 0.008). 

One-Sample Tests 

Chi-Square Goodness-of-Fit Test in SPSS 
15  

Objective 

The Chi-Square Goodness-of-Fit test is used to determine whether a sample of 

data came from a population with a specific distribution. 

Assumptions 

 One categorical variable, with two or more categories (see our guide on 

Types of Variable) 

 A hypothesized proportion (equal or unequal) 

 No more than 20% of expected frequencies have counts less than 5. 

Example 
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A website owner, Christopher, wants to offer a free gift to people that purchase a 

subscription to his website. New subscribers can choose one of three gifts of 

equal value: an Amazon Gift Voucher, a cuddly toy, or free cinema tickets. After 

1000 people have signed up, Christopher wants to review the figures to see if the 

three gifts offered were equally popular. 

Set-up in SPSS 

There are two methods of entering data into SPSS in order to run a Chi-Square 

Goodness-of-Fit test in SPSS. Common to both methods is a column in the SPSS 

data file for the categorical variable, which in this example, we shall name 

gift_type. We have assigned codes of "1" for the Amazon Gift Certificate and 

labelled it "Gift Certificate", "2" for the cuddly toy and labelled it "Cuddly Toy", 

and "3" for the free cinema tickets and labelled it "Cinema Tickets" (help on 

how to enter data can be found in our Entering Data in SPSS guide and how to 

code variables can be found in our Working with Variables guide). If the 

frequency data has already been summated for the various categories then we 

need to create a second column that contains the respective frequency counts; 

we have called this variable frequency. This type of data entry is shown below: 
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Alternatively, you may have the data in raw form, i.e. you have not summated 

the frequencies. In this case, you do not need a second column as SPSS can 

calculate the frequencies of occurrence of each category for you. This would mean 

that, in this example, there are 1000 rows of data, of which the beginning of said 

data is shown below: 
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Test Procedure in SPSS 

Weighting cases if summation used 

a. Click Data > Weight Cases... on the top menu as shown below:  
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b. You will be presented with the Weight Cases dialogue box as shown below:  
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c. Select the "Weight cases by" radio box and transfer the "frequency" 

variable into the "Frequency Variable:" box, which has now become 

highlighted, by using the button. You will get the following screen:  
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d. Click the button.  

Procedure for both methods 



1. Click Analyze > Nonparametric Tests > Legacy Dialogs > Chi-

square... on the top menu as shown below: (If you are on older versions 

of SPSS you will not have to go through the Legacy Dialogs menu)  
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2. You will be presented with the Chi-square Test dialogue box, as shown 

below: (The "frequency" variable will only be present if you entered in 

your data in summated form)  
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3. Transfer the "gift_type" variable into the "Test Variable List:" box by 

using the button as shown below:  
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[Keep the "All categories equal" option selecting in the "Expected Values" 

area as we are assuming equal proportions for each category.] 

4. Click the button to generate the output.  

SPSS Output for Chi-Square Goodness-of-Fit Test 

The table below, gift_type, provides the observed frequencies (Observed N) for 

each gift as well as the expected frequencies (Expected N), which are the 

frequencies expected if the null hypothesis is true. The difference between the 

observed and expected frequencies is provided in the Residual column. 
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The table below, Test Statistics, provides the actual result of the Chi-Square 

Goodness-of-Fit test. We can see from this table that our test statistic is 



statistically significant: χ2(2) = 49.4, p < .0005. We can, therefore, reject the null 

hypothesis and conclude that there are statistically significant differences in the 

preference of the type of sign-up gift, with less people preferring the Cuddly Toy 

(N = 230) compared to either the Amazon Gift Certificate (N = 370) and Cinema 

Tickets (N = 400). 

 
Published with written permission from SPSS Inc, an IBM Company. 

The footnotes to the table inform us that there are no expected frequencies less 

than a count of 5, which means that we have not violated one of the assumptions 

of the Chi-Square Goodness-of-Fit test. We could, of course, have determined 

this from the values in the gift_type table but SPSS conveniently calculates the 

percentage for us in the Test Statistics table. 

 

Statistical Guide 
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Descriptive and Inferential Statistics 
205  

When analysing data, for example, the marks achieved by 100 students for a 

piece of coursework, it is possible to use both descriptive and inferential statistics 

in your analysis of their marks. Typically, in most research conducted on groups 

of people, you will use both descriptive and inferential statistics to analyse your 

results and draw conclusions. So what are descriptive and inferential statistics? 

And what are their differences? 

Descriptive Statistics 

Descriptive statistics is the term given to the analysis of data that helps describe, 

show or summarize data in a meaningful way such that, for example, patterns 

might emerge from the data. Descriptive statistics do not, however, allow us to 

make conclusions beyond the data we have analysed or reach conclusions 

regarding any hypotheses we might have made. They are simply a way to 

describe our data. 
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Descriptive statistics are very important, as if we simply presented our raw data it 

would be hard to visulize what the data was showing, especially if there was a lot 

of it. Descriptive statistics therefore allow us to present the data in a more 

meaningful way which allows simpler interpretation of the data. For example, if 

we had the results of 100 pieces of students' coursework, we may be interested 

in the overall performance of those students. We would also be interested in the 

distribution or spread of the marks. Descriptive statistics allow us to do this. How 

to properly describe data through statistics and graphs is an important topic and 

discussed in other Laerd Statistics Guides. Typically, there are two general types 

of statistic that are used to describe data: 

 Measures of central tendency: these are ways of describing the central 

position of a frequency distribution for a group of data. In this case, the 

frequency distribution is simply the distribution and pattern of marks 

scored by the 100 students from the lowest to the highest. We can 

describe this central position using a number of statistics, including the 

mode, median, and mean. You can read about measures of central 

tendency here. 

 

 Measures of spread: these are ways of summarizing a group of data by 

describing how spread out the scores are. For example, the mean score of 

our 100 students may be 65 out of 100. However, not all students will 

have scored 65 marks. Rather, their scores will be spread out. Some will 

be lower and others higher. Measures of spread help us to summarize how 

spread out these scores are. To describe this spread, a number of statistics 

are available to us, including the range, quartiles, absolute deviation, 

variance and standard deviation. 

When we use descriptive statistics it is useful to summarize our group of data 

using a combination of tabulated description (i.e. tables), graphical description 

(i.e. graphs and charts) and statistical commentary (i.e. a discussion of the 

results). 

Inferential Statistics 

We have seen that descriptive statistics provide information about our immediate 

group of data. For example, we could calculate the mean and standard deviation 

of the exam marks for the 100 students and this could provide valuable 

information about this group of 100 students. Any group of data like this, that 

includes all the data you are interested, in is called a population. A population 

can be small or large, as long as it includes all the data you are interested in. For 

example, if you were only interested in the exam marks of 100 students, then the 

100 students would represent your population. Descriptive statistics are applied 

to populations and the properties of populations, like the mean or standard 

deviation, are called parameters as they represent the whole population (i.e. 

everybody you are interested in). 
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Often, however, you do not have access to the whole population you are 

interested in investigating but only have a limited number of data instead. For 

example, you might be interested in the exam marks of all students in the UK. It 

is not feasible to measure all exam marks of all students in the whole of the UK 

so you have to measure a smaller sample of students, for example, 100 

students, that are used to represent the larger population of all UK students. 

Properties of samples, such as the mean or standard deviation, are not called 

parameters but statistics. Inferential statistics are techniques that allow us to 

use these samples to make generalizations about the populations from which the 

samples were drawn. It is, therefore, important the sample accurately represents 

the population. The process of achieving this is called sampling (sampling 

strategies are discussed in detail here on our sister site). Inferential statistics 

arise out of the fact that sampling naturally incurs sampling error and thus a 

sample is not expected to perfectly represent the population. The methods of 

inferential statistics are (1) the estimation of parameter(s) and (2) testing of 

statistical hypotheses. 

We have provided some answers to common FAQs on the next page. 

Alternatively, why not now read our guide on Types of Variable? 

 

FAQs - Descriptive and Inferential Statistics 
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What are the similarities between descriptive and inferential statistics? 

Both descriptive and inferential statistics rely on the same set of data. Descriptive 

statistics rely solely on this set of data whilst inferential statistics also rely on this 

data in order to make generalisations about a larger population. 

What are the strengths of using descriptive statistics to examine a 

distribution of scores? 

Other than the clarity with which descriptive statistics can clarify large volumes of 

data, there are no uncertainties about the values you get (other than only 

measurement error, etc.). 

What are the limitations of descriptive statistics? 

Descriptive statistics are limited in so much that they only allow you to make 

summations about the people or objects that you have actually measured. You 

cannot use the data you have collected to generalize to other people or objects 

(i.e. using data from a sample to infer the properties/parameters of a 

population). For example, if you tested a drug to beat cancer and it worked in 

your patients, you cannot claim that it would work in other cancer patients only 

relying on descriptive statistics (but inferential statistics would give you this 

opportunity). 

What are the limitations of inferential statistics? 

There are two main limitations to the use of inferential statistics. The first, and 

most important, limitation, which is present in all inferential statistics, is that you 
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are providing data about a population that you have not fully measured and, 

therefore, cannot ever be completely sure that the values/statistics you calculate 

are correct. Remember, inferential statistics are based on the concept of using 

the values measured in a sample to estimate/infer the values that would be 

measured in a population; there will always be a degree of uncertainty in doing 

this. The second limitation is connected with the first limitation. Some, but not all, 

inferential tests require the user (i.e. you) to make educated guesses (based on 

theory) to run the inferential tests. Again, there will be some uncertainty in this 

process, which will have repercussions on the certainty of the results of some 

inferential statistics. 

Why not now read our guide on Types of Variable? 

Measures of Central Tendency 
313  

Introduction 

A measure of central tendency is a single value that attempts to describe a set of 

data by identifying the central position within that set of data. As such, measures 

of central tendency are sometimes called measures of central location. They are 

also classed as summary statistics. The mean (often called the average) is most 

likely the measure of central tendency that you are most familiar with, but there 

are others, such as, the median and the mode. 

The mean, median and mode are all valid measures of central tendency but, 

under different conditions, some measures of central tendency become more 

appropriate to use than others. In the following sections we will look at the mean, 

mode and median and learn how to calculate them and under what conditions 

they are most appropriate to be used. 

Mean (Arithmetic) 

The mean (or average) is the most popular and well known measure of central 

tendency. It can be used with both discrete and continuous data, although its use 

is most often with continuous data (see our Types of Variable guide for data 

types). The mean is equal to the sum of all the values in the data set divided by 

the number of values in the data set. So, if we have n values in a data set and 

they have values x1, x2, ..., xn, then the sample mean, usually denoted by 

(pronounced x bar), is: 

 

This formula is usually written in a slightly different manner using the Greek 

capitol letter, , pronounced "sigma", which means "sum of...": 
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You may have noticed that the above formula refers to the sample mean. So, why 

call have we called it a sample mean? This is because, in statistics, samples and 

populations have very different meanings and these differences are very 

important, even if, in the case of the mean, they are calculated in the same way. 

To acknowledge that we are calculating the population mean and not the sample 

mean, we use the Greek lower case letter "mu", denoted as µ: 

 

The mean is essentially a model of your data set. It is the value that is most 

common. You will notice, however, that the mean is not often one of the actual 

values that you have observed in your data set. However, one of its important 

properties is that it minimises error in the prediction of any one value in your 

data set. That is, it is the value that produces the lowest amount of error from all 

other values in the data set. 

An important property of the mean is that it includes every value in your data set 

as part of the calculation. In addition, the mean is the only measure of central 

tendency where the sum of the deviations of each value from the mean is always 

zero. 

When not to use the mean  

The mean has one main disadvantage: it is particularly susceptible to the 

influence of outliers. These are values that are unusual compared to the rest of 

the data set by being especially small or large in numerical value. For example, 

consider the wages of staff at a factory below: 

Staff 1 2 3 4 5 6 7 8 9 10 

Salary 15k 18k 16k 14k 15k 15k 12k 17k 90k 95k 

The mean salary for these ten staff is $30.7k. However, inspecting the raw data 

suggests that this mean value might not be the best way to accurately reflect the 

typical salary of a worker, as most workers have salaries in the $12k to 18k 

range. The mean is being skewed by the two large salaries. Therefore, in this 

situation we would like to have a better measure of central tendency. As we will 

find out later, taking the median would be a better measure of central tendency 

in this situation. 

Another time when we usually prefer the median over the mean (or mode) is 

when our data is skewed (i.e. the frequency distribution for our data is skewed). 

If we consider the normal distribution - as this is the most frequently assessed in 

statistics - when the data is perfectly normal then the mean, median and mode 

are identical. Moreover, they all represent the most typical value in the data set. 

However, as the data becomes skewed the mean loses its ability to provide the 

best central location for the data as the skewed data is dragging it away from the 

typical value. However, the median best retains this position and is not as 

strongly influenced by the skewed values. This is explained in more detail in the 

skewed distribution section later in this guide. 



Median 

The median is the middle score for a set of data that has been arranged in order 

of magnitude. The median is less affected by outliers and skewed data. In order 

to calculate the median, suppose we have the data below: 

65 55 89 56 35 14 56 55 87 45 92 

We first need to rearrange that data into order of magnitude (smallest first): 

14 35 45 55 55 56 56 65 87 89 92 

Our median mark is the middle mark - in this case 56 (highlighted in bold). It is 

the middle mark because there are 5 scores before it and 5 scores after it. This 

works fine when you have an odd number of scores but what happens when you 

have an even number of scores? What if you had only 10 scores? Well, you 

simply have to take the middle two scores and average the result. So, if we look 

at the example below: 

65 55 89 56 35 14 56 55 87 45 

We again rearrange that data into order of magnitude (smallest first): 

14 35 45 55 55 56 56 65 87 89 92 

Only now we have to take the 5th and 6th score in our data set and average 

them to get a median of 55.5. 

Mode 

The mode is the most frequent score in our data set. On a histogram it represents 

the highest bar in a bar chart or histogram. You can, therefore, sometimes 

consider the mode as being the most popular option. An example of a mode is 

presented below: 



 

Normally, the mode is used for categorical data where we wish to know which is 

the most common category as illustrated below: 



 

We can see above that the most common form of transport, in this particular data 

set, is the bus. However, one of the problems with the mode is that it is not 

unique, so it leaves us with problems when we have two or more values that 

share the highest frequency, such as below: 



 

We are now stuck as to which mode best describes the central tendency of the 

data. This is particularly problematic when we have continuous data, as we are 

more likely not to have any one value that is more frequent than the other. For 

example, consider measuring 30 peoples' weight (to the nearest 0.1 kg). How 

likely is it that we will find two or more people with exactly the same weight, 

e.g. 67.4 kg? The answer, is probably very unlikely - many people might be close 

but with such a small sample (30 people) and a large range of possible weights 

you are unlikely to find two people with exactly the same weight, that is, to the 

nearest 0.1 kg. This is why the mode is very rarely used with continuous data. 

Another problem with the mode is that it will not provide us with a very good 

measure of central tendency when the most common mark is far away from the 

rest of the data in the data set, as depicted in the diagram below: 



 

In the above diagram the mode has a value of 2. We can clearly see, however, 

that the mode is not representative of the data, which is mostly concentrated 

around the 20 to 30 value range. To use the mode to describe the central 

tendency of this data set would be misleading. 

Skewed Distributions and the Mean and Median 

We often test whether our data is normally distributed as this is a common 

assumption underlying many statistical tests. An example of a normally 

distributed set of data is presented below: 



 

When you have a normally distributed sample you can legitimately use both the 

mean or the median as your measure of central tendency. In fact, in any 

symmetrical distribution the mean, median and mode are equal. However, in this 

situation, the mean is widely preferred as the best measure of central tendency 

as it is the measure that includes all the values in the data set for its calculation, 

and any change in any of the scores will affect the value of the mean. This is not 

the case with the median or mode. 

However, when our data is skewed, for example, as with the right-skewed data 

set below: 



 

we find that the mean is being dragged in the direct of the skew. In these 

situations, the median is generally considered to be the best representative of the 

central location of the data. The more skewed the distribution the greater the 

difference between the median and mean, and the greater emphasis should be 

placed on using the median as opposed to the mean. A classic example of the 

above right-skewed distribution is income (salary), where higher-earners provide 

a false representation of the typical income if expressed as a mean and not a 

median. 

If dealing with a normal distribution, and tests of normality show that the data is 

non-normal, then it is customary to use the median instead of the mean. This is 

more a rule of thumb than a strict guideline however. Sometimes, researchers 

wish to report the mean of a skewed distribution if the median and mean are not 

appreciably different (a subjective assessment) and if it allows easier 

comparisons to previous research to be made. 

Summary of when to use the mean, median and mode 

Please use the following summary table to know what the best measure of central 

tendency is with respect to the different types of variable. 

Type of Variable Best measure of central tendency 

Nominal Mode 

Ordinal Median 

Interval/Ratio (not skewed) Mean 

Interval/Ratio (skewed) Median 
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For answers to frequently asked questions about measures of central tendency, 

please go the next page. 

FAQs - Measures of Central Tendency 
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Please find below some common questions that are asked regarding measures of 

central tendency, along with their answers. These FAQs are in addition to our 

article on measures of central tendency found on the previous page. 

What is the best measure of central tendency? 

There can often be a "best" measure of central tendency with regards to the data 

you are analysing but there is no one "best" measure of central tendency. This is 

because whether you use the median, mean or mode will depend on the type of 

data you have (see our Types of Variable guide), such as nominal or continuous 

data; whether your data has outliers and/or is skewed; and what you are trying 

to show from your data. Further considerations of when to use each measure of 

central tendency is found in our guide on the previous page. 

In a strongly skewed distribution, what is the best indicator of central 

tendency? 

It is usually inappropriate to use the mean in such situations where your data is 

skewed. You would normally choose the median or mode with the median usually 

preferred. This is discussed on the previous page under the subtitle, "When not to 

use the mean". 

Does all data have a median, mode and mean? 

Yes and no. All continuous data has a median, mode and mean. However, strictly 

speaking, ordinal data has a median and mode only, and nominal data has only a 

mode. However, a consensus has not been reached among statisticians about 

whether the mean can be used with ordinal data and you can often see a mean 

reported for Likert data in research. 

When is the mean the best measure of central tendency? 

The mean is usually the best measure of central tendency to use when your data 

distribution is continuous and symmetrical, such as when your data is normally 

distributed. However, it all depends on what you are trying to show from your 

data. 

When is the mode the best measure of central tendency? 

The mode is the least used of the measures of central tendency and can only be 

used when dealing with nominal data. For this reason, the mode will be the best 

measure of central tendency (as it is the only one appropriate to use) when 

dealing with nominal data. The mean and/or median are usually preferred when 

dealing with all other types of data but this does not mean it is never used with 

these data types. 
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When is the median the best measure of central tendency? 

The median is usually preferred to other measures of central tendency when your 

data set is skewed (i.e. forms a skewed distribution) or you are dealing with 

ordinal data. However, the mode can also be appropriate in these situations but is 

not as commonly used as the median. 

What is the most appropriate measure of central tendency when the data 

has outliers? 

The median is usually preferred in these situations as the value of the mean can 

be distorted by the outliers. However, it will depend on the how influential the 

outliers are. If they do not significantly distort the mean then using the mean as 

the measure of central tendency will usually be preferred. 

In a normally distributed data set, which is greatest: mode, median or 

mean? 

If the data set is perfectly normal then the mean, median and mean are equal to 

each other (i.e. the same value). 

For any data set, which measures of central tendency have only one 

value? 

The median and mean can only have one value for a given data set. The mode 

can have more than one value (see Mode section on previous page). 

Measures of Spread 
25  

Introduction 

A measure of spread, sometimes also called a measure of dispersion, is used to 

describe the variability in a sample or population. It is usually used in conjunction 

with a measure of central tendency, such as, the mean or median, to provide an 

overall description of a set of data.  

Why is it important to measure the spread of data? 

There are many reasons why the measure of the spread of data values is 

important but one of the main reasons regards its relationship with measures of 

central tendency. A measure of spread gives us an idea of how well the mean, for 

example, represents the data. If the spread of values in the data set is large then 

the mean is not as representative of the data as if the spread of data is small. 

This is because a large spread indicates that there are probably large differences 

between individual scores. Additionally, in research, it is often seen as positive if 

there is little variation in each data group as it indicates that the similar. 

We will be looking at the range, quartiles, variance, absolute deviation and 

standard deviation. 

Range 
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The range is the difference between the highest and lowest scores in a data set 

and is the simplest measure of spread. So we calculate range as: 

Range = maximum value - minimum value 

For example, let us consider the following data set: 

23 56 45 65 59 55 62 54 85 25 

The maximum value is 85 and the minimum value is 23. This results in a range of 

62, which is 85 minus 23. Whilst using the range as a measure of spread is 

limited, it does set the boundaries of the scores. This can be useful if you are 

measuring a variable that has either a critical low or high threshold (or both) that 

should not be crossed. The range will instantly inform you whether at least one 

value broke these critical thresholds. In addition, the range can be used to detect 

any errors when entering data. For example, if you have recorded the age of 

school children in your study and your range is 7 to 123 years old you know you 

have made a mistake! 

Quartiles and Interquartile Range 

Quartiles tell us about the spread of a data set by breaking the data set into 

quarters, just like the median breaks it in half. For example, consider the marks 

of the 100 students below, which have been ordered from the lowest to the 

highest scores, and the quartiles highlighted in red. 

Order  Score  Order  Score  Order  Score  Order  Score  Order  Score  
1st 35  21st  42  41st  53  61st  64  81st  74  

2nd  37  22nd  42  42nd  53  62nd  64  82nd  74  

3rd  37  23rd  44  43rd  54  63rd  65  83rd  74  

4th  38  24th  44  44th  55  64th  66  84th  75  

5th  39  25th  45  45th  55  65th  67  85th  75  

6th  39  26th  45  46th  56  66th  67  86th  76  

7th  39  27th  45  47th  57  67th  67  87th  77  

8th  39  28th  45  48th  57  68th  67  88th  77  

9th  39  29th  47  49th  58  69th  68  89th  79  

10th  40  30th  48  50th  58  70th  69  90th  80  

11th  40  31st  49  51st  59  71st  69  91st  81  

12th  40  32nd  49  52nd  60  72nd  69  92nd  81  

13th  40  33rd  49  53rd  61  73rd  70  93rd  81  

14th  40  34th  49  54th  62  74th  70  94th  81  

15th  40  35th  51  55th  62  75th  71  95th  81  

16th  41  36th  51  56th  62  76th  71  96th  81  

17th  41  37th  51  57th  63  77th  71  97th  83  

18th  42  38th  51  58th  63  78th  72  98th  84  

19th  42  39th  52  59th  64  79th  74  99th  84  

20th  42  40th  52  60th  64  80th  74  100th  85  

 

The first quartile (Q1) lies between the 25th and 26th student's marks, the 

second quartile (Q2) between the 50th and 51st student's marks, and the third 

quartile (Q3) between the 75th and 76th student's marks. Hence: 



First quartile (Q1) = 45 + 45 ÷ 2 = 45 

Second quartile (Q2) = 58 + 59 ÷ 2 = 58.5 

Third quartile (Q3) = 71 + 71 ÷ 2 = 71 

In the above example, we have an even number of scores (100 students rather 

than an odd number such as 99 students). This means that when we calculate the 

quartiles, we take the sum of the two scores around each quartile and then half 

them (hence Q1= 45 + 45 ÷ 2 = 45) . However, if we had an odd number of 

scores (say, 99 students), then we would only need to take one score for each 

quartile (that is, the 25th, 50th and 75th scores). You should recognize that the 

second quartile is also the median. 

Quartiles are a useful measure of spread because they are much less affected by 

outliers or a skewed data set than the equivalent measures of mean and standard 

deviation. For this reason, quartiles are often reported along with the median as 

the best choice of measure of spread and central tendency, respectively, when 

dealing with skewed and/or data with outliers. A common way of expressing 

quartiles is as an interquartile range. The interquartile range describes the 

difference between the third quartile (Q3) and the first quartile (Q1), telling us 

about the range of the middle half of the scores in the distribution. Hence, for our 

100 students: 

Interquartile range = Q3 - Q1 

= 71 - 45 

= 26  

However, it should be noted that in journals and other publications you will 

usually see the interquartile range reported as 45 to 71, rather than the 

calculated range. 

A slight variation on this is the semi-interquartile range, which is half the 

interquartile range = ½ (Q3 - Q1). Hence, for our 100 students, this would be 26 

÷ 2 = 13. 

Absolute Deviation & Variance 
12  

Variation 

Quartiles are useful but they are also somewhat limited because they do not take 

into account every score in our group of data. To get a more representative idea 

of spread we need to take into account the actual values of each score in a data 

set. The absolute deviation, variance and standard deviation are such measures. 

The absolute and mean absolute deviation show the amount of deviation 

(variation) that occurs around the mean score. To find the total variability in our 

group of data, we simply add up the deviation of each score from the mean. The 

average deviation of a score can then be calculated by dividing this total by the 

number of scores. How we calculate the deviation of a score from the mean 
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depends on our choice of statistic, whether we use absolute deviation, variance or 

standard deviation. 

Absolute Deviation and Mean Absolute Deviation 

Perhaps the simplest way of calculating the deviation of a score from the mean is 

to take each score and minus the mean score. For example, the mean score for 

the group of 100 students we used earlier was 58.75 out of 100. Therefore, if we 

took a student that scored 60 out of 100, the deviation of a score from the mean 

is 60 - 58.75 = 1.25. It is important to note that scores above the mean have 

positive deviations (as demonstrated above) whilst that scores below the mean 

will have negative deviations. 

To find out the total variability in our data set, we would perform this calculation 

for all of the 100 students' scores. However, the problem is that because we have 

both positive and minus signs, when we add up all of these deviations, they 

cancel each other out, giving us a total deviation of zero. Since we are only 

interested in the deviations of the scores and not whether they are above or 

below the mean score, we can ignore the minus sign and take only the absolute 

value, giving us the absolute deviation. Adding up all of these absolute 

deviations and dividing them by the total number of scores then gives us the 

mean absolute deviation (see below). Therefore, for our 100 students the mean 

absolute deviation is 12.81, as shown below: 

 

Variance 

Another method for calculating the deviation of a group of scores from the mean, 

such as the 100 students we used earlier, is to use the variance. Unlike the 

absolute deviation, which uses the absolute value of the deviation in order to "rid 

itself" of the negative values, the variance achieves positive values by squaring 

each of the deviations instead. Adding up these squared deviations gives us the 

sum of squares, which we can then divide by the total number of scores in our 

group of data (in other words, 100 because there are 100 students) to find the 

variance (see below). Therefore, for our 100 students, the variance is 211.89, as 

shown below: 
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As a measure of variability, the variance is useful. If the scores in our group of 

data are spread out then the variance will be a large number. Conversely, if the 

scores are spread closely around the mean, then the variance will be a smaller 

number. However, there are two potential problems with the variance. First, 

because the deviations of scores from the mean are 'squared', this gives more 

weight to extreme scores. If our data contains outliers (in other words, one or a 

small number of scores that are particularly far away from the mean and perhaps 

do not represent well our data as a whole) this can give undo weight to these 

scores. Secondly, the variance is not in the same units as the scores in our data 

set: variance is measured in the units squared. This means we cannot place it on 

our frequency distribution and cannot directly relate its value to the values in our 

data set. Therefore, the figure of 211.89, our variance, appears somewhat 

arbitrary. Calculating the standard deviation rather than the variance rectifies this 

problem. Nonetheless, analysing variance is extremely important in some 

statistical analyses, discussed in other statistical guides. 

Standard Deviation 
54  

Introduction 

The standard deviation is a measure of the spread of scores within a set of data. 

Usually, we are interested in the standard deviation of a population. However, as 

we are often presented with data from a sample only, we can estimate the 

population standard deviation from a sample standard deviation. These two 

standard deviations, sample and population standard deviations, are calculated 

differently. In statistics we are usually presented with having to calculate sample 

standard deviations, and so this is what this article will focus on, although the 

formula for a population standard deviation will also be shown. 

When to use the sample or population standard deviation 

We are normally interested in knowing the population standard deviation as our 

population contains all the values we are interested in. Therefore, you would 

normally calculate the population standard deviation if: (1) you have the entire 

population or (2) you have a sample of a larger population but you are only 

interested in this sample and do not wish to generalize your findings to the 

population. However, in statistics, we are usually presented with a sample from 

which we wish to estimate (generalize to) a population, and the standard 

deviation is no exception to this. Therefore, if all you have is a sample but you 
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wish to make a statement about the population standard deviation from which 

the sample is drawn, then you need to use the sample standard deviation. 

Confusion can often arise as to which standard deviation to use due to the name 

"sample" standard deviation incorrectly being interpreted as meaning the 

standard deviation of the sample itself and not as the estimate of the population 

standard deviation based on the sample. 

What type of data should you use when you calculate a standard deviation? 

The standard deviation is used in conjunction with the mean, to summarise 

continuous data not categorical data. In addition, the standard deviation, like the 

mean, is normally only appropriate when the continuous data is not significantly 

skewed or has outliers. 

Examples of when to use the sample or population standard deviation 

Q. A teacher sets an exam for their pupils. The teacher wants to summarize the 

results the pupils attained as a mean and standard deviation. Which standard 

deviation should be used? 

A. Population standard deviation. Why? Because the teacher is only interested in 

this class of pupils' scores and nobody else. 

Q. A researcher has recruited males aged 45 to 65 years old for an exercise 

training study to investigate risk markers for heart disease, e.g. cholesterol. 

Which standard deviation would most likely be used? 

A. Sample standard deviation. Although not explicitly stated, a researcher 

investigating health related issues will not be simply concerned with just the 

participants of their study; they will want to show how their sample results can be 

generalised to the whole population (in this case, males aged 45 to 65 years old). 

Hence, the use of the sample standard deviation. 

Q. One of the questions on a national consensus survey asks for respondent's 

age. Which standard deviation would be used to describe the variation in all ages 

received from the consensus? 

A. Population standard deviation. A national consensus is used to find out 

information about the nation's citizens. By definition, it includes the whole 

population, therefore, a population standard deviation would be used. 

What are the formulas for the standard deviation? 

The sample standard deviation formula is: 

 

where, 

s = sample standard deviation 

= sum of... 
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= sample mean 

n = number of scores in sample.  

The population standard deviation formula is: 

 

where, 

= population standard deviation 

= sum of... 

= population mean 

n = number of scores in sample.  

Is there an easy way to calculate the standard deviation? 

Yes, we have a sample and population standard deviation calculator that shows 

you all the working as well! It can be found in our calculator section here. 

Absolute Deviation & Variance 
12  

Variation 

Quartiles are useful but they are also somewhat limited because they do not take 

into account every score in our group of data. To get a more representative idea 

of spread we need to take into account the actual values of each score in a data 

set. The absolute deviation, variance and standard deviation are such measures. 

The absolute and mean absolute deviation show the amount of deviation 

(variation) that occurs around the mean score. To find the total variability in our 

group of data, we simply add up the deviation of each score from the mean. The 

average deviation of a score can then be calculated by dividing this total by the 

number of scores. How we calculate the deviation of a score from the mean 

depends on our choice of statistic, whether we use absolute deviation, variance or 

standard deviation. 

Absolute Deviation and Mean Absolute Deviation 

Perhaps the simplest way of calculating the deviation of a score from the mean is 

to take each score and minus the mean score. For example, the mean score for 

the group of 100 students we used earlier was 58.75 out of 100. Therefore, if we 

took a student that scored 60 out of 100, the deviation of a score from the mean 

is 60 - 58.75 = 1.25. It is important to note that scores above the mean have 

positive deviations (as demonstrated above) whilst that scores below the mean 

will have negative deviations. 

To find out the total variability in our data set, we would perform this calculation 

for all of the 100 students' scores. However, the problem is that because we have 

both positive and minus signs, when we add up all of these deviations, they 

cancel each other out, giving us a total deviation of zero. Since we are only 
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interested in the deviations of the scores and not whether they are above or 

below the mean score, we can ignore the minus sign and take only the absolute 

value, giving us the absolute deviation. Adding up all of these absolute 

deviations and dividing them by the total number of scores then gives us the 

mean absolute deviation (see below). Therefore, for our 100 students the mean 

absolute deviation is 12.81, as shown below: 

 

Variance 

Another method for calculating the deviation of a group of scores from the mean, 

such as the 100 students we used earlier, is to use the variance. Unlike the 

absolute deviation, which uses the absolute value of the deviation in order to "rid 

itself" of the negative values, the variance achieves positive values by squaring 

each of the deviations instead. Adding up these squared deviations gives us the 

sum of squares, which we can then divide by the total number of scores in our 

group of data (in other words, 100 because there are 100 students) to find the 

variance (see below). Therefore, for our 100 students, the variance is 211.89, as 

shown below: 

 

As a measure of variability, the variance is useful. If the scores in our group of 

data are spread out then the variance will be a large number. Conversely, if the 

scores are spread closely around the mean, then the variance will be a smaller 

number. However, there are two potential problems with the variance. First, 

because the deviations of scores from the mean are 'squared', this gives more 

weight to extreme scores. If our data contains outliers (in other words, one or a 

small number of scores that are particularly far away from the mean and perhaps 

do not represent well our data as a whole) this can give undo weight to these 

scores. Secondly, the variance is not in the same units as the scores in our data 

set: variance is measured in the units squared. This means we cannot place it on 

our frequency distribution and cannot directly relate its value to the values in our 



data set. Therefore, the figure of 211.89, our variance, appears somewhat 

arbitrary. Calculating the standard deviation rather than the variance rectifies this 

problem. Nonetheless, analysing variance is extremely important in some 

statistical analyses, discussed in other statistical guides. 

Absolute Deviation & Variance 
12  

Variation 

Quartiles are useful but they are also somewhat limited because they do not take 

into account every score in our group of data. To get a more representative idea 

of spread we need to take into account the actual values of each score in a data 

set. The absolute deviation, variance and standard deviation are such measures. 

The absolute and mean absolute deviation show the amount of deviation 

(variation) that occurs around the mean score. To find the total variability in our 

group of data, we simply add up the deviation of each score from the mean. The 

average deviation of a score can then be calculated by dividing this total by the 

number of scores. How we calculate the deviation of a score from the mean 

depends on our choice of statistic, whether we use absolute deviation, variance or 

standard deviation. 

Absolute Deviation and Mean Absolute Deviation 

Perhaps the simplest way of calculating the deviation of a score from the mean is 

to take each score and minus the mean score. For example, the mean score for 

the group of 100 students we used earlier was 58.75 out of 100. Therefore, if we 

took a student that scored 60 out of 100, the deviation of a score from the mean 

is 60 - 58.75 = 1.25. It is important to note that scores above the mean have 

positive deviations (as demonstrated above) whilst that scores below the mean 

will have negative deviations. 

To find out the total variability in our data set, we would perform this calculation 

for all of the 100 students' scores. However, the problem is that because we have 

both positive and minus signs, when we add up all of these deviations, they 

cancel each other out, giving us a total deviation of zero. Since we are only 

interested in the deviations of the scores and not whether they are above or 

below the mean score, we can ignore the minus sign and take only the absolute 

value, giving us the absolute deviation. Adding up all of these absolute 

deviations and dividing them by the total number of scores then gives us the 

mean absolute deviation (see below). Therefore, for our 100 students the mean 

absolute deviation is 12.81, as shown below: 
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Variance 

Another method for calculating the deviation of a group of scores from the mean, 

such as the 100 students we used earlier, is to use the variance. Unlike the 

absolute deviation, which uses the absolute value of the deviation in order to "rid 

itself" of the negative values, the variance achieves positive values by squaring 

each of the deviations instead. Adding up these squared deviations gives us the 

sum of squares, which we can then divide by the total number of scores in our 

group of data (in other words, 100 because there are 100 students) to find the 

variance (see below). Therefore, for our 100 students, the variance is 211.89, as 

shown below: 

 

As a measure of variability, the variance is useful. If the scores in our group of 

data are spread out then the variance will be a large number. Conversely, if the 

scores are spread closely around the mean, then the variance will be a smaller 

number. However, there are two potential problems with the variance. First, 

because the deviations of scores from the mean are 'squared', this gives more 

weight to extreme scores. If our data contains outliers (in other words, one or a 

small number of scores that are particularly far away from the mean and perhaps 

do not represent well our data as a whole) this can give undo weight to these 

scores. Secondly, the variance is not in the same units as the scores in our data 

set: variance is measured in the units squared. This means we cannot place it on 

our frequency distribution and cannot directly relate its value to the values in our 

data set. Therefore, the figure of 211.89, our variance, appears somewhat 

arbitrary. Calculating the standard deviation rather than the variance rectifies this 

problem. Nonetheless, analysing variance is extremely important in some 

statistical analyses, discussed in other statistical guides. 

Standard Deviation 



54  

Introduction 

The standard deviation is a measure of the spread of scores within a set of data. 

Usually, we are interested in the standard deviation of a population. However, as 

we are often presented with data from a sample only, we can estimate the 

population standard deviation from a sample standard deviation. These two 

standard deviations, sample and population standard deviations, are calculated 

differently. In statistics we are usually presented with having to calculate sample 

standard deviations, and so this is what this article will focus on, although the 

formula for a population standard deviation will also be shown. 

When to use the sample or population standard deviation 

We are normally interested in knowing the population standard deviation as our 

population contains all the values we are interested in. Therefore, you would 

normally calculate the population standard deviation if: (1) you have the entire 

population or (2) you have a sample of a larger population but you are only 

interested in this sample and do not wish to generalize your findings to the 

population. However, in statistics, we are usually presented with a sample from 

which we wish to estimate (generalize to) a population, and the standard 

deviation is no exception to this. Therefore, if all you have is a sample but you 

wish to make a statement about the population standard deviation from which 

the sample is drawn, then you need to use the sample standard deviation. 

Confusion can often arise as to which standard deviation to use due to the name 

"sample" standard deviation incorrectly being interpreted as meaning the 

standard deviation of the sample itself and not as the estimate of the population 

standard deviation based on the sample. 

What type of data should you use when you calculate a standard deviation? 

The standard deviation is used in conjunction with the mean, to summarise 

continuous data not categorical data. In addition, the standard deviation, like the 

mean, is normally only appropriate when the continuous data is not significantly 

skewed or has outliers. 

Examples of when to use the sample or population standard deviation 

Q. A teacher sets an exam for their pupils. The teacher wants to summarize the 

results the pupils attained as a mean and standard deviation. Which standard 

deviation should be used? 

A. Population standard deviation. Why? Because the teacher is only interested in 

this class of pupils' scores and nobody else. 

Q. A researcher has recruited males aged 45 to 65 years old for an exercise 

training study to investigate risk markers for heart disease, e.g. cholesterol. 

Which standard deviation would most likely be used? 

A. Sample standard deviation. Although not explicitly stated, a researcher 

investigating health related issues will not be simply concerned with just the 

participants of their study; they will want to show how their sample results can be 
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generalised to the whole population (in this case, males aged 45 to 65 years old). 

Hence, the use of the sample standard deviation. 

Q. One of the questions on a national consensus survey asks for respondent's 

age. Which standard deviation would be used to describe the variation in all ages 

received from the consensus? 

A. Population standard deviation. A national consensus is used to find out 

information about the nation's citizens. By definition, it includes the whole 

population, therefore, a population standard deviation would be used. 

What are the formulas for the standard deviation? 

The sample standard deviation formula is: 

 

where, 

s = sample standard deviation 

= sum of... 

= sample mean 

n = number of scores in sample.  

The population standard deviation formula is: 

 

where, 

= population standard deviation 

= sum of... 

= population mean 

n = number of scores in sample.  

Is there an easy way to calculate the standard deviation? 

Yes, we have a sample and population standard deviation calculator that shows 

you all the working as well! It can be found in our calculator section here. 

Standard Deviation 
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Introduction 

The standard deviation is a measure of the spread of scores within a set of data. 

Usually, we are interested in the standard deviation of a population. However, as 

we are often presented with data from a sample only, we can estimate the 

population standard deviation from a sample standard deviation. These two 

standard deviations, sample and population standard deviations, are calculated 
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differently. In statistics we are usually presented with having to calculate sample 

standard deviations, and so this is what this article will focus on, although the 

formula for a population standard deviation will also be shown. 

When to use the sample or population standard deviation 

We are normally interested in knowing the population standard deviation as our 

population contains all the values we are interested in. Therefore, you would 

normally calculate the population standard deviation if: (1) you have the entire 

population or (2) you have a sample of a larger population but you are only 

interested in this sample and do not wish to generalize your findings to the 

population. However, in statistics, we are usually presented with a sample from 

which we wish to estimate (generalize to) a population, and the standard 

deviation is no exception to this. Therefore, if all you have is a sample but you 

wish to make a statement about the population standard deviation from which 

the sample is drawn, then you need to use the sample standard deviation. 

Confusion can often arise as to which standard deviation to use due to the name 

"sample" standard deviation incorrectly being interpreted as meaning the 

standard deviation of the sample itself and not as the estimate of the population 

standard deviation based on the sample. 

What type of data should you use when you calculate a standard deviation? 

The standard deviation is used in conjunction with the mean, to summarise 

continuous data not categorical data. In addition, the standard deviation, like the 

mean, is normally only appropriate when the continuous data is not significantly 

skewed or has outliers. 

Examples of when to use the sample or population standard deviation 

Q. A teacher sets an exam for their pupils. The teacher wants to summarize the 

results the pupils attained as a mean and standard deviation. Which standard 

deviation should be used? 

A. Population standard deviation. Why? Because the teacher is only interested in 

this class of pupils' scores and nobody else. 

Q. A researcher has recruited males aged 45 to 65 years old for an exercise 

training study to investigate risk markers for heart disease, e.g. cholesterol. 

Which standard deviation would most likely be used? 

A. Sample standard deviation. Although not explicitly stated, a researcher 

investigating health related issues will not be simply concerned with just the 

participants of their study; they will want to show how their sample results can be 

generalised to the whole population (in this case, males aged 45 to 65 years old). 

Hence, the use of the sample standard deviation. 

Q. One of the questions on a national consensus survey asks for respondent's 

age. Which standard deviation would be used to describe the variation in all ages 

received from the consensus? 
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A. Population standard deviation. A national consensus is used to find out 

information about the nation's citizens. By definition, it includes the whole 

population, therefore, a population standard deviation would be used. 

What are the formulas for the standard deviation? 

The sample standard deviation formula is: 

 

where, 

s = sample standard deviation 

= sum of... 

= sample mean 

n = number of scores in sample.  

The population standard deviation formula is: 

 

where, 

= population standard deviation 

= sum of... 

= population mean 

n = number of scores in sample.  

Is there an easy way to calculate the standard deviation? 

Yes, we have a sample and population standard deviation calculator that shows 

you all the working as well! It can be found in our calculator section here. 

Hypothesis Testing 
55  

When we conduct a piece of quantitative research we are inevitably attempting to 

answer a hypothesis that we have set. Since hypothesis testing has many facets, 

let’s look at an example. 

The lecturer's dilemma 

Two statistics lecturers, Sarah and Mike, think that they use the best method to 

teach their students. Each lecturer has 50 statistics students that are studying a 

graduate degree in management. In Sarah’s class, students have to attend one 

lecture and one seminar class every week, whilst in Mike’s class students only 

have to attend one lecture. Sarah thinks that seminars, in addition to lectures, 

are an important teaching method in statistics, whilst Mike believes that lectures 

are sufficient by themselves and thinks that students are better off solving 
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problems by themselves in their own time. This is the first year that Sarah has 

given seminars, but since they take up a lot of her time, she wants to make sure 

that she is not wasting her time and that seminars improve her students’ 

performance. 

The structure of hypothesis testing 

Whilst all pieces of quantitative research have some dilemma, issue or problem 

that they are trying to investigate, the focus in hypothesis testing is to find ways 

to structure these in such a way that we can test them effectively. Typically, it is 

important to: 

1. Define the research hypothesis and set the parameters for the study. 

2. 
Set out the null and alternative hypothesis (or more than one hypothesis; in 

other words, a number of hypotheses). 

3. 
Explain how you are going to operationalise (that is, measure or operationally 

define) what you are studying and set out the variables to be studied. 

4. Set the significance level. 

5. Make a one- or two-tailed prediction. 

6. 
Determine whether the distribution that you are studying is normal (this has 

implications for the types of statistical tests that you can run on your data). 

7. 
Select an appropriate statistical test based on the variables you have defined and 

whether the distribution is normal or not. 

8. Run the statistical tests on your data and interpret the output. 

9. Accept or reject the null hypothesis. 

Whilst there are some variations on this structure, it is adopted by most thorough 

quantitative research studies. Throughout this guide we discuss this hypothesis 

testing process using our example of the two statistics lecturers, Sarah and Mike, 

and their alternative teaching methods. We focus on the first fives steps in the 

process, as well as the decision to either accept or reject the null hypothesis. A 

discussion of normality, selecting statistical tests, and running these statistical 

tests is discussed in the statistical guide, Selecting Statistical Tests. At the end, 

we highlight some of the other statistical guides that we think you would benefit 

from reading before going on to design your own quantitative piece of research. 

The research hypothesis 

This study aims to examine the effect that two different teaching methods – 

providing lectures and seminar classes (Sarah) and providing lectures by 

themselves (Mike) – had on the performance of Sarah’s 50 students and Mike’s 

50 students. By establishing that we are not only interested in these 100 

students, we set the parameters for the study. This is important because if we 

were interested in the effect that these teaching methods had on students’ 

performance in general, there would be wider sampling implications (see the 

statistical guide, Sampling, for more information). 

Whilst Mike is sceptical about the effectiveness of seminars, Sarah clearly 

believes that giving seminars, in addition to lectures, helps her students do better 

than those in Mike’s class. This leads us to the following research hypothesis: 

Research Hypothesis: When students attend seminar classes, in addition to 
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lectures, their performance increases. 

The null and alternative hypothesis 

Whilst only providing a research hypothesis like the above is sometimes 

adequate, it is good practice in quantitative research to re-state this as a null and 

alternative hypothesis. 

Null Hypotheses (Ho): Undertaking seminar classes has no effect on students’ 

performance. 

Alternative Hypothesis 

(Ha): 

Undertaking seminar class has a positive effect on students’ 

performance. 

 

The null hypothesis predicts that the distributions that we are comparing are the 

same. This brings us back to the core of hypothesis testing; comparing 

distributions (see the statistical guide, Frequency Distributions, for more 

information on distributions). In this study, there are two distributions that we 

are comparing.  

Distribution 1 (seminar) The distribution of exam marks for the 50 students in 

Sarah’s class that attended both lectures and seminars. 

Distribution 2 (lecture only) The distribution of exam marks for the 50 students in 

Mike’s class that attended only lectures. 

If the two distributions are the same this would mean that the addition of 

seminars to lectures as a teaching method did not have an effect on students’ 

performance and we would accept the null hypothesis. Alternatively, if there was 

a difference in the distributions and this difference was statistically significant, 

we would reject the null hypothesis. The question then arises: Do we accept the 

alternative hypothesis? 

Before we answer this question and three related concepts (the alternative 

hypothesis, one- and two-tailed predictions, and statistical significance) it is 

worth addressing the issue of operationally defining our study. 

Hypothesis Testing (cont...) 
8  

Operationally defining (measuring) the study 

The question arises: What do we mean by performance? Clearly, performance 

could mean how students score in a piece of coursework, how many times they 

can answer questions in class, what marks they get in their exams, and so on. 

There are two obvious reasons why we should be clear about how we 

operationalise (that is, measure) what we are studying. First, we simply need to 

be clear so that people reading our work are in no doubt about what we are 

studying. This makes it easier for them to repeat the study in future to see if they 

also get the same (or similar) results; something called internal validity. 

Second, one of the criteria by which quantitative research is assessed, perhaps by 

an examiner if you are a student, is how you define what your are measuring (in 

this case, performance) and how you choose to measure it. 
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Nonetheless, it is worth noting that these choices will sometimes be personal 

choices and at other times they will be guided by something else. For example, if 

we were to measure intelligence, there may be a number of characteristics that 

we could use, such as IQ, emotional intelligence, and so forth. What we choose 

here will likely be a personal choice because all these variables are proxies for 

intelligence; that is, they are variables used to infer an individual’s intelligence 

but not everyone would agree that IQ alone is an accurate measure of 

intelligence. In comparison, if we were measuring firm performance, there may 

be an established number of measures in the academic and practitioner literature 

that determine what we should test, such as Return on Assets, etc… Therefore, to 

know what you should measure, it is always worth looking at the literature first to 

see what other studies have done, whether you use the same measures or not. It 

is then a matter of making an educated decision whether the variables you 

choose to examine are accurate proxies for what you are trying to study, as well 

as discussing the potential limitations of these proxies. 

In the case of measuring a student’s performance there are a number of proxies 

that could be used, such as class participation, coursework marks and exam 

marks, since these are all good measures of performance. However, in this case, 

we choose exam marks as our measure of performance for two reasons. First, as 

a statistics tutor, we feel that Sarah’s main job is to help her students get the 

best grade possible since this will affect her students’ overall grades in their 

graduate management degree. Second, the assessment for the statistics course is 

a single 2 hour exam. Since there is no coursework and class participation is not 

assessed in this course, exam marks seem to be the most appropriate proxy for 

performance. However, it is worth noting that if the assessment for the statistics 

course was not only a 2 hour exam but also a piece of coursework, we would 

probably have chosen to measure both exam marks and coursework marks as 

proxies of performance. 

Variables 

The next step is to define the variables that we are using in our study (see the 

statistical guide, Types of Variable, for more information). Since the study aims to 

examine the effect that two different teaching methods – providing lectures and 

seminar classes (Sarah) and providing lectures by themselves (Mike) – had on 

the performance of Sarah’s 50 students and Mike’s 50 students, the variables 

being measured are: 

Dependent variable: Exam marks 

Independent variable: Teaching method (“seminar” vs. “lecture only”) 

By using a very straightforward example, we have only one dependent variable 

and one independent variable although studies can examine any number of 

dependent and independent variables. 

One- and two-tailed predictions 

Returning to our discussion of the null and alternative hypothesis, it is worth re-

stating that if the two distributions (the seminar distribution and the lecture only 

https://statistics.laerd.com/statistical-guides/types-of-variable.php


distribution) are the same, this would mean that the addition of seminars to 

lectures as a teaching method did not have an effect on students’ performance 

and we would accept the null hypothesis. Alternatively, if there was a difference 

in the distributions and this difference was statistically significant, we would 

reject the null hypothesis. The question then arises: Do we accept the alternative 

hypothesis? 

Alternative Hypothesis (Ha): Undertaking seminar class has a positive effect on 

students’ performance. 

The alternative hypothesis tells us two things. First, what predictions did we 

make about the effect of the independent variable(s) on the dependent 

variable(s)? Second, what was the predicted direction of this effect? Let’s use 

our example to highlight these two points. 

Sarah predicted that her teaching method (independent variable: teaching 

method), whereby she not only required her students to attend lectures 

(distribution: lecture only), but also seminars (distribution: seminar), had a 

positive effect (that is, increased) students’ performance (dependent variable: 

exam marks). The direction of her prediction is what we call one-tailed, which can 

be illustrated using the diagrams below. 

  

Hypothesis Testing (cont...) 
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A one-tailed prediction indicates that you believe that your distribution (the 

“seminar” distribution) is either higher up (diagram A) or lower down (diagram B) 

the scale (in this case, exam marks) compared with the alternative distribution 

(the “lectures only” distribution). 

Alternately, a two-tailed prediction means that we do not make a choice over the 

direction that our distribution moves. Rather, it simply implies that our 

distribution could be either higher up or lower down the scale. If Sarah had made 

a two-tailed prediction, our alternative hypothesis might have been: 

Alternative Hypothesis (Ha): Undertaking seminar class has an effect on students’ 

performance. 

In other words, we simply take out the word “positive”, which implies the 

direction of our effect. In our example, making a two-tailed prediction may seem 

strange, which would be a fair comment. After all, it would be logical to expect 

that “extra” tuition (going to seminar classes as well as lectures) would either 
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have a positive effect on students’ performance or no effect at all, but certainly 

not a negative effect. Therefore, the two distributions would either be the same 

or the seminar distribution would move higher up the scale. Nonetheless, there 

are cases when we do not know what the effect might be. For example, rather 

than using seminars in addition to teaching, Sarah could have used an untested, 

experimental teaching method. Since this teaching method was experimental, we 

may not be able to assume whether it would have a positive or negative effect on 

students’ performance, or simply no effect at all. 

Significance levels 

Whilst we are close to being able to either accept or reject the null hypothesis 

and if we reject it, either accept or reject the alternative hypothesis, rigour 

requires that we first set the significance level for our study. 

Statistical significance is about probability. It asks the question: What is the 

probability that a score could have arisen by chance? In terms of our two 

distributions, statistically analysing the differences in the distribution may, for 

example, suggest that there are no differences in the two distributions; hence we 

should accept the null hypothesis. However, how confident are we that there 

really are no differences between the distributions? 

Typically, if there was a 5% or less chance (5 times in 100 or less) that a score 

from the focal distribution (the “seminar” distribution”) could not have come from 

the comparison distribution (the “lectures only” distribution), we would accept the 

null hypothesis. Alternately, if the chance was greater than 5% (6 times in 100 or 

more) we would reject the null hypothesis. We do not reject the null hypothesis 

because our statistical analysis did not show that the two distributions were the 

same. We reject it because at a significance level of 0.05 (that is, 5% or less 

chance) we could not be confident enough that this result did not simply happen 

by chance. 

Whilst there is relatively little justification why a significance level of 0.05 is used 

rather than 0.04 or 0.10, for example, it is widely accepted in academic research. 

However, if we want to be particularly confident in our results, we set a more 

stringent level of 0.01 (a 1% chance or less; 1 in 100 chance or less). 

Accepting or rejecting the null hypothesis 

Therefore, let’s return finally to the question of whether we (a) reject or accept 

the null hypothesis; and (b) if we reject the null hypothesis, do we accept the 

alternative hypothesis. 

If our statistical analysis shows that the two distributions are the same at the 

significance level (either 0.05 or 0.01) that we have set, we simply accept the 

null hypothesis. Alternatively, if the two distributions are different, we need to 

either accept or reject the alternative hypothesis. This will depend on whether we 

made a one- or two-tailed prediction (see below). 
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If we (a) made a one-tailed prediction, (b) predicted that our distribution (the 

“seminar” distribution) moved in the correct direction (either up or down the 

scale), and (c) the result was statistically significant at the level we selected 

(either 0.05 or 0.01), then we accept the alternative hypothesis. If we were 

wrong about either the direction of our prediction or the result was not 

statistically significant at the selected level, then we reject the alternative 

hypothesis. 

 

If we made a two-tailed prediction, this has a bearing on our significance level 

because we are unsure in which direction our distribution (the “seminar” 

distribution) will move (up or down). As a result, both ends of our distribution are 

relevant. Allowing a 5% or less chance that a score from our distribution (the 

“seminar” distribution”) came from the comparison distribution (the “lectures 

only” distribution) would result in a 10% or less chance of making an error 

because we have to add together the 5% or less significance level from both ends 

of our distribution (see diagram A). Therefore, we can only allow at 2.5% chance 

or less (0.025) that a score from our distribution came from the comparison 

distribution (see diagram B), which added together would ensure that our overall 

chance of making an error remained at the 0.05 significance level. 

On this basis, if we (a) made a two-tailed prediction, and (b) the result was 

statistically significant at the level we selected (either 0.025 or 0.005), then we 

accept the alternative hypothesis, that “undertaking seminar class has an effect 
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on students’ performance”, but we would also state the direction of the effect that 

was indicated by our results. In other words, we would state that undertaking 

seminar class has a “positive” effect on students’ performance. 

Moving forward 

Other key aspects of hypothesis testing include a discussion of normality, 

selecting statistical tests, and running these statistical tests. These are discussed 

in the statistical guide, Selecting Statistical Tests. However, we would 

recommend that before you read this guide, you first read the guide on Sampling. 

 

 

Types of Variable 
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All experiments examine some kind of variable(s). A variable is not only 

something that we measure, but also something that we can manipulate and 

something we can control for. To understand the characteristics of variables and 

how we use them in research, this guide is divided into three main sections. First, 

we illustrate the role of dependent and independent variables. Second, we discuss 

the difference between experimental and non-experimental research. Finally, we 

explain how variables can be characterised as either categorical or continuous. 

Dependent and Independent Variables 

An independent variable, sometimes called an experimental or predictor variable, 

is a variable that is being manipulated in an experiment in order to observe the 

effect on a dependent variable, sometimes called an outcome variable. 

Imagine that a tutor asks 100 students to complete a maths test. The tutor wants 

to know why some students perform better than others. Whilst the tutor does not 

know the answer to this, she thinks that it might be because of two reasons: (1) 

some students spend more time revising for their test; and (2) some students are 

naturally more intelligent than others. As such, the tutor decides to investigate 

the effect of revision time and intelligence on the test performance of the 100 

students. The dependent and independent variables for the study are: 

Dependent Variable: Test Mark (measured from 0 to 100) 

Independent Variables: Revision time (measured in hours) Intelligence 

(measured using IQ score) 

The dependent variable is simply that, a variable that is dependent on an 

independent variable(s). For example, in our case the test mark that a student 

achieves is dependent on revision time and intelligence. Whilst revision time and 

intelligence (the independent variables) may (or may not) cause a change in the 

test mark (the dependent variable), the reverse is implausible; in other words, 

whilst the number of hours a student spends revising and the higher a student's 

IQ score may (or may not) change the test mark that a student achieves, a 
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change in a student's test mark has no bearing on whether a student revises 

more or is more intelligent (this simply doesn't make sense). 

Therefore, the aim of the tutor's investigation is to examine whether these 

independent variables - revision time and IQ - result in a change in the 

dependent variable, the students' test scores. However, it is also worth noting 

that whilst this is the main aim of the experiment, the tutor may also be 

interested to know if the independent variables - revision time and IQ - are also 

connected in some way. 

In the section on experimental and non-experimental research that follows, we 

find out a little more about the nature of independent and dependent variables. 

Experimental and Non-Experimental Research 

 Experimental research: In experimental research, the aim is to manipulate 

an independent variable(s) and then examine the effect that this change 

has on a dependent variable(s). Since it is possible to manipulate the 

independent variable(s), experimental research has the advantage of 

enabling a researcher to identify a cause and effect between variables. For 

example, take our example of 100 students completing a maths exam 

where the dependent variable was the exam mark (measured from 0 to 

100) and the independent variables were revision time (measured in 

hours) and intelligence (measured using IQ score). Here, it would be 

possible to use an experimental design and manipulate the revision time of 

the students. The tutor could divide the students into two groups, each 

made up of 50 students. In "group one", the tutor could ask the students 

not to do any revision. Alternately, "group two" could be asked to do 20 

hours of revision in the two weeks prior to the test. The tutor could then 

compare the marks that the students achieved. 

 Non-experimental research: In non-experimental research, the researcher 

does not manipulate the independent variable(s). This is not to say that it 

is impossible to do so, but it will either be impractical or unethical to do so. 

For example, a researcher may be interested in the effect of illegal, 

recreational drug use (the dependent variable(s)) on certain types of 

behaviour (the independent variable(s)). However, whilst possible, it would 

be unethical to ask individuals to take illegal drugs in order to study what 

effect this had on certain behaviours. As such, a researcher could ask both 

drug and non-drug users to complete a questionnaire that had been 

constructed to indicate the extent to which they exhibited certain 

behaviours. Whilst it is not possible to identify the cause and effect 

between the variables, we can still examine the association or relationship 

between them.In addition to understanding the difference between 

dependent and independent variables, and experimental and non-

experimental research, it is also important to understand the different 

characteristics amongst variables. This is discussed next. 

Categorical and Continuous Variables 



Categorical variables are also known as discrete or qualitative variables. 

Categorical variables can be further categorized as either nominal, ordinal or 

dichotomous. 

 Nominal variables are variables that have two or more categories but 

which do not have an intrinsic order. For example, a real estate agent 

could classify their types of property into distinct categories such as 

houses, condos, co-ops or bungalows. So "type of property" is a nominal 

variable with 4 categories called houses, condos, co-ops and bungalows. 

Of note, the different categories of a nominal variable can also be referred 

to as groups or levels of the nominal variable. Another example of a 

nominal variable would be classifying where people live in the USA by 

state. In this case there will be many more levels of the nominal variable 

(50 in fact). 

 Dichotomous variables are nominal variables which have only two 

categories or levels. For example, if we were looking at gender, we would 

most probably categorize somebody as either "male" or "female". This is 

an example of a dichotomous variable (and also a nominal variable). 

Another example might be if we asked a person if they owned a mobile 

phone. Here, we may categorise mobile phone ownership as either "Yes" 

or "No". In the real estate agent example, if type of property had been 

classified as either residential or commercial then "type of property" would 

be a dichotomous variable. 

 Ordinal variables are variables that have two or more categories just like 

nominal variables only the categories can also be ordered or ranked. So if 

you asked someone if they liked the policies of the Democratic Party and 

they could answer either "Not very much", "They are OK" or "Yes, a lot" 

then you have an ordinal variable. Why? Because you have 3 categories, 

namely "Not very much", "They are OK" and "Yes, a lot" and you can rank 

them from the most positive (Yes, a lot), to the middle response (They are 

OK), to the least positive (Not very much). However, whilst we can rank 

the levels, we cannot place a "value" to them; we cannot say that "They 

are OK" is twice as positive as "Not very much" for example. 

Continuous variables are also known as quantitative variables. Continuous 

variables can be further categorized as either interval or ratio variables. 

 Interval variables are variables for which their central characteristic is that 

they can be measured along a continuum and they have a numerical value 

(for example, temperature measured in degrees Celsius or Fahrenheit). So 

the difference between 20C and 30C is the same as 30C to 40C. However, 

temperature measured in degrees Celsius or Fahrenheit is NOT a ratio 

variable. 

 Ratio variables are interval variables but with the added condition that 0 

(zero) of the measurement indicates that there is none of that variable. 

So, temperature measured in degrees Celsius or Fahrenheit is not a ratio 



variable because 0C does not mean there is no temperature. However, 

temperature measured in Kelvin is a ratio variable as 0 Kelvin (often called 

absolute zero) indicates that there is no temperature whatsoever. Other 

examples of ratio variables include height, mass, distance and many more. 

The name "ratio" reflects the fact that you can use the ratio of 

measurements. So, for example, a distance of ten metres is twice the 

distance of 5 metres. 

Ambiguities in classifying a type of variable 

In some cases, the measurement scale for data is ordinal but the variable is 

treated as continuous. For example, a Likert scale that contains five values - 

strongly agree, agree, neither agree nor disagree, disagree, and strongly disagree 

- is ordinal. However, where a Likert scale contains seven or more value - 

strongly agree, moderately agree, agree, neither agree nor disagree, disagree, 

moderately disagree, and strongly disagree - the underlying scale is sometimes 

treated as continuous although where you should do this is a cause of great 

dispute. 

It is worth noting that how we categorise variables is somewhat of a choice. 

Whilst we categorised gender as a dichotomous variable (you are either male or 

female), social scientists may disagree with this, arguing that gender is a more 

complex variable involving more than two distinctions, but also including 

measurement levels like genderqueer, intersex, and transgender. At the same 

time, some researchers would argue that a Likert scale, even with seven values, 

should never be treated as a continuous variable. 
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This guide will show you how to calculate the probability (area under the curve) 

of a standard normal distribution. It will first show you how to interpret a 

Standard Normal Distribution Table. It will then show you how to calculate the: 

 probability less than a z-value 

 probability greater than a z-value 

 probability between z-values 

 probability outside two z-values. 

We have a calculator that calculates probabilities based on z-values for all the 

above situations. In addition, it also outputs all the working to get to the answer, 

so you know the logic of how to calculate the answer. The calculator can be found 

here. 

How to Use the Standard Normal Distribution Table 
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The most common form of standard normal distribution table that you see is a 

table similar to the one below (click image to enlarge): 

 
The Standard Normal Distribution Table 

The standard normal distribution table provides the probability that a normally 

distributed random variable Z, with mean equal to 0 and variance equal to 1, is 

less than or equal to z. It does this for positive values of z only, i.e. z-values on 

the right-hand side of the mean. What this means in practice is that if someone 

asks you to find the probability of a value being less than a specific, positive z-

value, you can simply look that value up in the table. We call this area Φ. Thus, 

for this table, P(Z < a) = Φ(a), where a is positive. 

Diagrammatically, the probability of Z less than 'a' being Φ(a), as determined 

from the standard normal distribution table, is shown below: 

 

Probability less than a z-value 

P(Z < –a) 

As explained above, the standard normal distribution table only provides the 

probability for values less than a positive z-value, i.e. z-values on the right-hand 

side of the mean. So how do we calculate the probability below a negative z-value 

(as illustrated below)? 

 



We start by remembering that the standard normal distribution has a total area 

(probability) equal to 1 and it is also symmetrical about the mean. Thus, we can 

do the following to calculate negative z-values: we need to appreciate that the 

area under the curve covered by P(Z > a) is the same as the probability less than 

–a {P(Z < –a)} as illustrated below: 

 

Making this connection is very important as, from the standard normal 

distribution table, we can calculate the probability less than 'a', as 'a' is now a 

positive value. Imposing P(Z < a) on the above graph is illustated below: 

 

From the above illustration, and from our knowledge that the area under the 

standard normal distribution is equal to 1, we can conclude that the two areas 

add up to 1. We can, therefore, make the following statements: 

Φ(a) + Φ(–a) = 1 
 

∴  Φ(–a) = 1 – Φ(a)  

Thus, we know that to find a value less than a negative z-value we use the 

following equation: 

Φ(–a) = 1 – Φ(a),       e.g. Φ(–1.43) = 1 – Φ(1.43) 

Probability greater than a z-value 

P(Z > a) 

The probability of P(Z > a) is: 1 – Φ(a). To understand the reasoning behind this 

look at the illustration below: 



 

You know Φ(a) and you know that the total area under the standard normal curve 

is 1 so by mathematical deduction: P(Z > a) is: 1 - Φ(a). 

P(Z > –a) 

The probability of P(Z > –a) is P(a), which is Φ(a). To understand this we need to 

appreciate the symmetry of the standard normal distribution curve. We are trying 

to find out the area below: 

 

But by reflecting the area around the centre line (mean) we get the following: 

 

Notice that this is the same size area as the area we are looking for, only we 

already know this area, as we can get it straight from the standard normal 

distribution table: it is P(Z < a). Therefore, the P(Z > –a) is P(Z < a), which is 

Φ(a). 

Probability between z-values 

You are wanting to solve the following: 

 



The key requirement to solve the probability between z-values is to understand 

that the probability between z-values is the difference between the probability of 

the greatest z-value and the lowest z-value: 

P(a < Z < b) = P(Z < b) – P(Z < a) 

which is illustrated below: 

 

P(a < Z < b) 

The probability of P(a < Z < b) is calculated as follows. 

First separate the terms as the difference between z-scores: 

P(a < Z < b) = P(Z < b) – P( Z < a) (explained in the section above) 

Then express these as their respective probabilities under the standard normal 

distribution curve: 

P(Z < b) – P(Z < a) = Φ(b) – Φ(a). 

Therefore, P(a < Z < b) = Φ(b) – Φ(a), where a and b are positive. 

P(–a < Z < b) 

The probability of P(–a < Z < b) is illustrated below: 

 

First separate the terms as the difference between z-scores: 

P(–a < Z < b) = P(Z < b) – P(Z < –a) 

Then express these as their respective probabilities under the standard normal 

distribution curve: 

P(Z < b) – P(Z < –a) = Φ(b) – Φ(–a)  
 

= Φ(b) – {1 – Φ(a)}P(Z < –a) explained above. 

∴  P(–a < Z < b) = Φ(b) – {1 – Φ(a)}, where a is negative and b is positive. 
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P(–a < Z < –b) 

The probability of P(–a < Z < –b) is illustrated below: 

 

First separate the terms as the difference between z-scores: 

P(–a < Z < –b) = P(Z < –b) – P( Z < –a) 

Then express these as their respective probabilities under the standard normal 

distribution curve: 

P(Z < b) – P(Z < –a) = Φ(–b) – Φ(–a)  
 

= {1 – Φ(b)} – {1 – Φ(a)} P(Z < –a) explained above. 
 

= 1 – Φ(b) – 1 + Φ(a) 
 

= Φ(a) – Φ(b) 

The above calculations can also be seen clearly in the diagram below: 

 

Notice that the reflection results in a and b "swapping positions". 

Probability outside of a range of z-values 

An illustration of this type of problem is found below: 
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To solve these types of problems you simply need to work out each 

separate area under the standard normal distribution curve and then add 

the probabilities together. This will give you the total probability. 

When a is negative and b is positive (as above) the total probability 

is: 

P(Z < –a) + P(Z > b) = Φ(–a) + {1 – Φ(b)} P(Z > b) explained above. 
 

= {1 – Φ(a)} + {1 – Φ(b)} P(Z < –a) explained above. 
 

= 1 – Φ(a) + 1 – Φ(b) 
 

= 2 – Φ(a) – Φ(b)  

When a and b are negative as illustrated below: 

 

The total probability is: 

P(Z < –a) + P(Z > –b) = Φ(–a) + Φ(b)P(Z > –b) explained above. 
 

= {1 – Φ(a)} + Φ(b)P(Z < –a) explained above. 
 

= 1 + Φ(b) – Φ(a)  

When a and b are positive as illustrated below: 

 

The total probability is: 

P(Z < a) + P(Z > b) = Φ(a) + {1 – Φ(b)}P(Z > b) explained above. 
 

= 1 + Φ(a) – Φ(b)  

Check out our calculator here to get some practice in! 
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What is a histogram? 

A histogram is a plot that lets you discover, and show, the underlying frequency 

distribution (shape) of a set of continuous data. This allows the inspection of the 

data for its underlying distribution (e.g. normal distribution), outliers, skewness, 

etc. An example of a histogram, and the raw data it was constructed from, is 

shown below: 

 

36 25 38 46 55 68 72 55 36 38 

67 45 22 48 91 46 52 61 58 55 

How do you construct a histogram from a continuous variable? 

To construct a histogram from a continuous variable you first need to split the 

data into intervals, called bins. In the example above, age has been split into 

bins, with each bin representing a 10-year period starting at 20 years. Each bin 

contains the number of occurrences of scores in the data set that are contained 

within that bin. For the above data set, the frequencies in each bin have been 

tabulated along with the scores that contributed to the frequency in each bin (see 

below): 

Bin Frequency Scores Included in Bin 

20-30 2 25,22 

30-40 4 36,38,36,38 

40-50 4 46,45,48,46 

50-60 5 55,55,52,58,55 

60-70 3 68,67,61 

70-80 1 72 

80-90 0 - 

90-100 1 91 
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Notice that, unlike a bar chart, there are no "gaps" between the bars (although 

some bars might be "absent" reflecting no frequencies). This is because a 

histogram represents a continuous data set, and as such, there are no gaps in the 

data. (Although you will have to decide whether you round up or round down 

scores on the boundaries of bins) 

Choosing the correct bin width 

There is no right or wrong answer as to how wide a bin should be, but there are 

rules of thumb. You need to make sure that the bins are not too small or too 

large. Consider the histogram we produced earlier (see above): the following 

histograms use the same data but have either much smaller or larger bins, as 

shown below: 

 

We can see from the histogram on the left, that the bin width is too small as it 

shows too much individual data and does not allow the underlying pattern 

(frequency distribution) of the data to be easily seen. At the other end of the 

scale, is the diagram on the right, where the bins are too large and, again, we are 

unable to find the underlying trend in the data. 

Histograms are based on area not height of bars 

In a histogram, it is the area of the bar that indicates the frequency of 

occurrences for each bin. This means that the height of the bar does not 

necessarily indicate how many occurrences of scores there were within each 

individual bin. It is the product of height multiplied by the width of the bin that 

indicates the frequency of occurrences within that bin. One of the reasons that 

the height of the bars is often incorrectly assessed as indicating frequency and 

not the area of the bar is due to the fact that a lot of histograms often have 

equally spaced bars (bins) and, under these circumstances, the height of the bin 

does reflect the frequency. 

What is the difference between a bar chart and a histogram? 

The major difference is that a histogram is only used to plot the frequency of 

score occurrences in a continuous data set that has been divided into classes, 



called bins. Bar charts, on the other hand, can be used for a great deal of other 

types of variables including ordinal and nominal data sets. 

Standard Score 
59  

The standard score (more commonly referred to as a z-score) is a very useful 

statistic because (a) it allows us to calculate the probability of a score occurring 

within our normal distribution and (b) it enables us to compare two scores that 

are from different normal distributions. The standard score does this by 

converting (in other words, standardizing) scores in a normal distribution to z-

scores in what becomes a standard normal distribution. To explain what this 

means in simple terms, let's use an example (if needed, see our statistical guide, 

Normal Distribution Calculations, for background information on normal 

distribution calculations). 

Setting the scene: Part 1 

A tutor sets a piece of English Literature coursework for the 50 students in his 

class. We make the assumption that when the scores are presented on a 

histogram the data is found to be normally distributed. The mean score is 60 out 

of 100 and the standard deviation (in other words, the variation in the scores) is 

15 marks (see our statistical guides, Measures of Central Tendency and Standard 

Deviation, for more information about the mean and standard deviation). 

Having looked at the performance of the tutor's class, one student, Sarah, has 

asked the tutor if, by scoring 70 out of 100, she has done well. Bearing in mind 

that the mean score was 60 out of 100 and that Sarah scored 70, then at first 

sight it may appear that since Sarah has scored 10 marks above the 'average' 

mark, she has achieved one of the best marks. However, this does not take into 

consideration the variation in scores amongst the 50 students (in other words, 

the standard deviation). After all, if the standard deviation is 15, then there is a 

reasonable amount of variation amongst the scores when compared with the 

mean. 

Whilst Sarah has still scored much higher than the mean score, she has not 

necessarily achieved one of the best marks in her class. The question arises: How 

well did Sarah perform in her English Literature coursework compared to the 

other 50 students? Before answering this question, let us look at another 

problem. 

The tutor has a dilemma. In the next academic year, he must choose which of his 

students have performed well enough to be entered into an advanced English 

Literature class. He decides to use the coursework scores as an indicator of the 

performance of his students. As such, he feels that only those students that are in 

the top 10% of the class should be entered into the advanced English Literature 

class. The question arises: Which students came in the top 10% of the class? 
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Therefore, we are left with two questions to answer. First, how well did Sarah 

perform in her English Literature coursework compared to the other 50 students? 

Second, which students came in the top 10% of the class? 

Whilst it is possible to calculate the answer to both of these questions using the 

existing mean score and standard deviation, this is very complex. Therefore, 

statisticians have come up with probability distributions, which are ways of 

calculating the probability of a score occurring for a number of common 

distributions, such as the normal distribution. In our case, we make the 

assumption that the students' scores are normally distributed. As such, we can 

use something called the standard normal distribution and its related z-

scores to answer these questions much more easily. 

Standard Normal Distribution and Standard Score (z-score) 

When a frequency distribution is normally distributed we can find out the 

probability of a score occurring by standardising the scores, known as standard 

scores (or z scores). The standard normal distribution simply converts the group 

of data in our frequency distribution such that the mean is 0 and the standard 

deviation is 1 (see below). 

 

Standard Score (cont...) 
14  

Z-scores are expressed in terms of standard deviations from their means. 

Resultantly, these z-scores have a distribution with a mean of 0 and a standard 

deviation of 1. The formula for calculating the standard score is given below. 
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As the formula shows, the standard score is simply the score, minus the mean 

score, divided by the standard deviation. Therefore, let's return to our two 

questions. 

1. How well did Sarah perform in her English Literature coursework 

compared to the other 50 students? 

To answer this question, we can re-phrase it as: What percentage (or number) of 

students scored higher than Sarah and what percentage (or number) of students 

scored lower than Sarah? First, let's reiterate that Sarah scored 70 out of 100, 

the mean score was 60, and the standard deviation was 15 (see below). 

  Score Mean 
Standard 

Deviation 

  (X) µ s 

English Literature 70 60 15 

In terms of z-scores, this gives us: 

 

The z-score is 0.67 (to 2 decimal places), but now we need to work out the 

percentage (or number) of students that scored higher and lower than Sarah. To 

do this, we need to refer to the standard normal distribution table. 

This table helps us to identify the probability that a score is greater or less than 

our z-score score. To use the table, which is easier than it might look at first 

sight, we start with our z-score, 0.67 (if our z-score had more than two decimal 

places, for example, ours was 0.6667, we would round it up or down accordingly; 

hence, 0.6667 would become 0.67). The y-axis in the table highlights the first 

two digits of our z-score and the x-axis the second decimal place. Therefore, we 

start with the y-axis, finding 0.6, and then move along the x-axis until we find 

0.07, before finally reading off the appropriate number, in this case, 0.2514. This 

means that the probability of a score being greater than 0.67 is 0.2514. If we 

look at this as a percentage, we simply times the score by 100; hence 0.2514 x 

100 = 25.14%. In other words, around 25% of the class got a better mark than 

Sarah (roughly 25 students since there is no such thing as part of a student!). 

Going back to our question, "How well did Sarah perform in her English Literature 

coursework compared to the other 50 students?", then clearly we can see that 

Sarah did better than a large proportion of students, with 74.86% of the class 

scoring lower than her (100% - 25.14% = 74.86%). We can also see how well 

she performed relative to the mean score by subtracting her score from the mean 

(0.5 - 0.2514 = 0.2486), Hence, 24.86% of the scores (0.2486 x 100 = 

24.86%) were lower than Sarah's but above the mean score. However, the key 

finding is that Sarah's score was not one of the best marks. It wasn't even in the 

top 10% of scores in the class, even though at first sight we may have expected 

it to be. This leads us onto the second question. 



2. Which students came in the top 10% of the class? 

A better way of phrasing this would be to ask: What mark would a student have 

to achieve to be in the top 10% of the class and qualify for the advanced English 

Literature class? 

Standard Score (cont...) 
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To answer this question, we need to find the mark (which we call "X") on our 

frequency distribution that reflects the top 10% of marks. Since the mean score 

was 60 out of 100, we immediately know that the mark will be greater than 60. 

After all, if we refer to our frequency distribution below, we are interested in the 

area to the right of the mean score of 60 that reflects the top 10% of marks 

(shaded in red). As a decimal, the top 10% of marks would be those marks above 

0.9 (that is, 100% - 90% = 10% or 1 - 0.9 = 0.1). 

 

First, we should convert our frequency distribution into a standard normal 

distribution as discussed in the opening paragraphs of this guide. As such, our 

mean score of 60 becomes 0 and the score (X) we are looking for, 0.9, becomes 

our z-score, which is currently unknown. Note the changes to the labelling of the 

x-axis. 

 

The next step involves finding out the value for our z-score. To do this, we refer 

back to the standard normal distribution table. 

In answering the first question in this guide, we already knew the z-score, 0.67, 

which we used to find the appropriate percentage (or number) of students that 

scored higher than Sarah, 0.2514 (that is, 25.14% or roughly 25 students 

achieve a higher mark than Sarah). Using the z-score, 0.67, and the y-axis and 
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x-axis of the standard normal distribution table, this guided us to the appropriate 

value, 0.2514. In this case, we need to do the exact reverse to find our z-score. 

We know the percentage we are trying to find, the top 10% of students, 

corresponds to 0.9. As such, we first need to find the value 0.9 in standard 

normal distribution table. When looking at the table, you may notice that the 

closest value to 0.9 is 0.8997. If we take the 0.8997 value as our starting point 

and then follow this row across to the left, we are presented with the first part of 

the z-score. You will notice that the value on the y-axis for 0.8997 is 1.2. We now 

need to do the same for the x-axis, using the 0.8997 value as our starting point 

and following the column up. This time, the value on the x-axis for 0.8997 is 

0.08. This forms the second part of the z-score. Putting these two values 

together, the z-score for 0.8997 is 1.28 (that is, 1.2 + 0.08 = 1.28). 

There is only one problem with this z-score; that is, it is based on a value of 

0.8997 rather than the 0.9 value we are interested in. This is one of the 

difficulties of refer to the standard normal distribution table because it cannot 

give every possible z-score value (that we require a quite enormous table!). 

Therefore, you can either take the closest two values, 0.8997 and 0.9015, to your 

desired value, 0.9, which reflect the z-scores of 1.28 and 1.29, and then calculate 

the exact value of "z" for 0.9, or you can use a z-score calculator. If we use a z-

score calculator, our value of 0.9 corresponds with a z-score of 1.282. In other 

words, P ( z > 1.282 ) = 0.1. 

 

Now that we have the key information (that is, the mean score, µ, the standard 

deviation, s , and z-score, z) we can answer our question directly, namely: What 

mark would a student have to achieve to be in the top 10% of the class and 

qualify for the advanced English Literature class? First, let us reiterate the facts: 

Score Mean 
Standard 

Deviation 
z-score 

(X) µ s z 

? 60 15 1.282 

To find out the relevant score, we apply the following formula: 



 

Therefore, students that scored above 79.23 marks out of 100 came in the top 

10% of the English Literature class, qualifying for the advanced English Literature 

class as a result. 

Setting the Scene: Part II 

Clearly, the z-score statistic is helpful in highlighting how Sarah performed in her 

English Literature coursework and what mark a student would have to achieve to 

be in the top 10% of the class and qualify for the advanced English Literature 

class. However, we have only been talking about one distribution here, namely 

the distribution of scores amongst 50 students that completed a piece of English 

Literature coursework. What if Sarah wanted to compare how well she performed 

in her Maths coursework compared with her English Literature coursework? 

In this case, Sarah achieved a higher mark in her Maths coursework, 72 out of 

100. However, as we have already learnt, just because her Maths score (72) is 

higher than her English Literature score (70), we shouldn't assume that she 

performed better in her Maths coursework compared to her English Literature 

coursework. The question therefore arises: How well did Sarah perform in her 

Maths coursework compared to her English Literature coursework? 
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Clearly, the two scores (her English Literature and Maths coursework marks) 

come from different distributions. The distribution of 50 students that completed 

the English Literature coursework has a mean of 60 and standard deviation of 15. 

The distribution of 50 students that completed the Maths coursework, on the 

other hand, has a mean of 68 and a standard deviation of 6. This gives us the 

following: 

  Score Mean 
Standard 

Deviation 

  (X) µ s 

English Literature 70 60 15 

Maths 72 68 6 

Since these scores are from two different distributions, we need to standardise 

them into z-scores so that they can be directly compared. This gives us: 
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The z-scores highlight that the student is two thirds (z = 0.67) of a standard 

deviation above the mean in English Literature, but also two thirds (z = 0.67) of a 

standard deviation above the mean in Maths. Using the standard normal 

distribution table, we can see that Sarah clearly performed above 'average' in 

both subjects although again, around 25% of the class got a better mark than 

her. However, the key point her is that the standard score showed that Sarah 

performed equally well in her English Literature and Maths coursework, even 

though her marks were different in both pieces. This shows the usefulness of the 

standard score statistic. 

In the following statistical guide, Hypothesis Testing, we start to set out some of 

the key aspects of quantitative research. 

 

Statistical Tests 

Independent T-Test for Two Samples 
42  

Introduction 

The independent t-test, also called the two sample t-test or student's t-test is an 

inferential statistical test that determines whether there is a statistically 

significant difference between the means in two unrelated groups. 

Hypothesis for the independent t-test 

The null hypothesis for the independent t-test is that the population means from 

the two unrelated groups are equal: 

H0: u1 = u2 

In most cases, we are looking to see if we can show that we can reject the null 

hypothesis and accept the alternative hypothesis, which is that the population 

means are not equal: 

HA: u1 ≠ u2 

To do this we need to set a significance level (alpha) that allows us to either 

reject or accept the alternative hypothesis. Most commonly, this value is set at 

0.05. 

What do you need to run an independent t-test? 

In order to run an independent t-test you need the following: 

 One independent, categorical variable that has two levels. 
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 One dependent variable 

Unrelated groups 

Unrelated groups, also called unpaired groups or independent groups, are groups 

in which the cases in each group are different. Often we are investigating 

differences in individuals, which means that when comparing two groups, an 

individual in one group cannot also be a member of the other group and vice 

versa. An example would be gender - an individual would have to be classified as 

either male or female - not both. 

Assumption of normality of the dependent variable 

The independent t-test requires that the dependent variable is approximately 

normally distributed within each group. We can test for this using a multitude of 

tests but the Shapiro-Wilks Test or a graphical method, such as a Q-Q Plot, are 

very common. You can run these tests using SPSS, the procedure for which can 

be found in our Testing for Normality guide. However, the t-test is described as a 

robust test with respect to the assumption of normality. This means that even 

deviations away from normality do not have a large influence on Type I error 

rates. The exception to this is if the difference in the size of the groups is greater 

than 1.5 (largest compared to smallest). 

What to do when you violate the normality assumption 

If you find that either one or both of your group's data is not approximately 

normally distributed and groups sizes differ greatly then you have two options: 

(1) transform your data so that the data becomes normally distributed (to do this 

in SPSS see our guide on Transforming Data), or (2) run the Mann-Whitney U 

Test which is a non-parametric test that does not require the assumption of 

normality (to run this test in SPSS see our guide on the Mann-Whitney U Test). 

Assumption of Homogeneity of Variance 

The independent t-test assumes the variances of the two groups you are 

measuring to be equal. If your variances are unequal then this can affect the 

Type I error rate. The assumption of homogeneity of variance can be tested using 

Levene's Test of Equality of Variances, which is produced in SPSS when running 

the independent t-test. If you have run Levene's Test of Equality of Variances, in 

SPSS or by another means, then you will get a result similar to that below: 

 

This test for homogeneity of variance provides an F statistic and a significance 

value (P-value). We are primarily concerned with the significance level - if it is 

greater than 0.05 then our group variances can be treated as equal. However, if P 

< 0.05, then we have unequal variances and we have violated the assumption of 

homogeneity of variance.  

Overcoming a Violation of the Assumption of Homogeneity of Variance 
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If the Levene's Test for Equality of Variances is statistically significant and, 

therefore, indicates unequal variances, we can correct for this violation by not 

using the pooled estimate for the error term for the t-statistic and also making 

adjustments to the degrees of freedom using the Welch-Satterthwaite method. In 

all reality, you will probably never have heard of these adjustments as SPSS 

hides this information and simply labels the two options as "Equal variances 

assumed" and "Equal variances not assumed" without explicitly stating the 

underlying tests used. However, you can see the evidence of these tests as 

below: 

 

From the result of Levene's Test for Equality of Variances we can reject the null 

hypothesis that there is no difference in the variances between the groups and 

accept the alternative hypothesis that there is a significant difference in the 

variances between groups. The effect of not being able to assume equal variances 

is evident in the final column of the above figure where we see a reduction in the 

value of the t-statistic and a large reduction in the degrees of freedom (df). This 

has the effect of increasing the P-value above the critical significance level of 

0.05. In this case, we therefore do not accept the alternative hypothesis and 

accept that there are no statistically significant differences between means. This 

would not have been our conclusion had we not tested for homogeneity of 

variances. 

Reporting the Result of an Independent T-Test 

When reporting the result of an independent t-test, you need to include the t-

statistic value, the degrees of freedom (df) and the significance value of the test 

(P-value). The format of the test result is: t(df) = t-statistic, P = significance 

value. For the example above you could, therefore, report the result as t(7.001) 

= 2.233, P = 0.061. 

Fully Reporting Your Results 

In order to provide enough information for readers to fully understand the results 

when you have run an independent t-test you should include the result of 

normality tests, Levene's Equality of Variances test, the two group means and 

standard deviations, the actual t-test result and the direction of the difference (if 

any). In addition, you might also wish to include the difference between the 

groups along with the 95% confidence intervals. For example: 

Inspection of Q-Q Plots revealed that cholesterol concentration was normally 

distributed for both groups and that there was homogeneity of variance as 

assessed by Levene's Test for Equality of Variances. Therefore, an independent t-



test was run on the data as well as 95% confidence intervals (CI) for the mean 

difference. It was found that after the two interventions, cholesterol 

concentrations in the dietary group (6.15 ± 0.52 mmol/L) were significantly 

higher than the exercise group (5.80 ± 0.38 mmol/L) (t(38) = 2.470, P = 0.018) 

with a difference of 0.35 (95% CI, 0.06 to 0.64) mmol/L. 

Dependent T-Test for Paired Samples 
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What does this test do? 

The dependent t-test (also called the paired t-test or paired-samples t-test) 

compares the means of two related groups to detect whether there are any 

statistically significant differences between these means. 

If you wish to learn how to calculate the dependent t-test then we have a 

dependent t-test calculator that also generates all the working involved in getting 

to the answer. The calculator can be found here. 

What variables do you need for a dependent t-test? 

You need one dependent variable that is measured on an interval or ratio scale 

(see our Types of Variable guide if you need clarification). You also need one 

categorical variable that has only two related groups. 

What is meant by "related groups"? 

A dependent t-test is an example of a "within-subjects" or "repeated-measures" 

statistical test. This indicates that the same subjects are tested more than once. 

Thus, in the dependent t-test, "related groups" indicates that the same subjects 

are present in both groups. The reason that it is possible to have the same 

subjects in each group is because each subject has been measured on two 

occasions on the same dependent variable. For example, you might have 

measured 10 individuals' (subjects') performance in a spelling test (the 

dependent variable) before and after they underwent a new form of computerised 

teaching method to improve spelling. You would like to know if the computer 

training improved their spelling performance. Here, we can use a dependent t-

test as we have two related groups. The first related group consists of the 

subjects at the beginning (prior to) the computerised spell training and the 

second related group consists of the same subjects but now at the end of the 

computerised training. 

Does the dependent t-test test for "changes" or "differences" between related 

groups? 

The dependent t-test can be used to test either a "change" or a "difference" in 

means between two related groups but not both at the same time. Whether you 

are measuring a "change" or "difference" between the means of the two related 

groups depends on your study design. The two types of study design are 

indicated in the following diagrams. 
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How do you detect differences between experimental conditions using the 

dependent t-test? 

The dependent t-test can look for "differences" between means when subjects are 

measured on the same dependent variable under two different conditions. For 

example, you might have tested subjects' eyesight (dependent variable) when 

wearing two different types of spectacle (independent variable). See the diagram 

below for a general schematic of this design approach (click the image to 

enlarge): 
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How do you detect changes in time using the dependent t-test? 

The dependent t-test can also look for "changes" between means when the 

subjects are measured on the same dependent variable but at two time points. A 

common use of this is in a pre-post study design. In this type of experiment we 

measure subjects at the beginning and at the end of some intervention, e.g. an 

exercise-training programme or business-skills course. A general schematic is 

provided below (click image to enlarge): 
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How else might you use the dependent t-test? 

You can also use the dependent t-test to study more complex study designs 

although it is not normally recommended. The most common, more complex 

study design where you might use the dependent t-test is where you have a 

crossover design with two different interventions that are both performed by the 

same subjects. One example of this design is where you have one of the 

interventions act as a control. For example, you might want to investigate 

whether a course of diet counselling can help people lose weight. To study this 

you could simply measure subjects' weight before and after the diet counselling 

course for any changes in weight using a dependent t-test. However, to improve 

the study design you also include want to include a control trial. During this 

control trial, the subjects could either receive "normal" counselling or do nothing 

at all or something else you deem appropriate. In order to assess this study using 

a dependent t-test you would use the same subjects for the control trial as the 

diet counselling trial. You then measure the differences between the interventions 

at the end, and only at the end, of the two interventions. Remember, however, 

that this is unlikely to be the preferred statistical analysis for this study design. 

What are the assumptions of the dependent t-test? 

The types of variable needed for the dependent t-test have already been 

discussed earlier in this guide. In addition, the distribution of the differences 

between the scores of the two related groups needs to be normally distributed. 

We do this by simply subtracting each individuals' score in one group from their 

score in the other related group and then testing for normality in the normal way 

(see our guide on how to test for normality in SPSS here). It is important to note 

that the two related groups do not need to be normally distributed themselves - 

just the differences between the groups. 



Go to the last page of our guide here. 
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What hypothesis is being tested? 

The dependent t-test is testing the null hypothesis that there are no differences 

between the means of the two related groups. If we get a significant result then 

we can reject the null hypothesis that there are no significant differences between 

the means and accept the alternative hypothesis that there are statistically 

significant differences between the means. We can express this as follows: 

H0: µ1 = µ2 

HA: µ1 ≠ µ2 

What is the advantage of a dependent t-test over an independent t-test? 

Before we answer this question, we need to point out that you cannot choose one 

test over the other unless your study design allows it. What we are discussing 

here is whether it is advantageous to design a study that uses one set of subjects 

whom are measured twice or two separate groups of subjects measured once 

each. The major advantage of choosing a repeated-measures design (and 

therefore running a dependent t-test) is that you get to eliminate the individual 

differences that occur between subjects - the concept that no two people are the 

same - and this increases the power of the test. What this means is that you are 

more likely to detect any significant differences, if they do exist, using the 

dependent t-test versus the independent t-test. 

Can the dependent t-test be used to compare different subjects? 

Yes, but this does not happen very often. You can use the dependent t-test 

instead of using the usual independent t-test when each subject in one of the 

independent groups is closely related to another subject in the other group on 

many individual characteristics. This approach is called a "matched-pairs" design. 

The reason we might want to do this is that the major advantage of running a 

within-subject (repeated-measures) design is that you get to eliminate between-

groups variation from the equation (each individual is unique and will react 

slightly differently than someone else), thereby increasing the power of the test. 

Hence, the reason why we use the same subjects - we expect them to react in 

the same way as they are, after all, the same person. The most obvious case of 

when a "matched-pairs" design might be implemented is when using identical 

twins. Effectively you are choosing parameters to match your subjects on which 

you believe will result in each pair of subjects reacting in a similar way. 

How do I report the result of a dependent t-test? 

You need to report the test as follows: 
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where df is N - 1, where N = number of subjects.  

Should I report confidence levels? 

Confidence intervals (CI) are a useful statistic to include as they indicate the 

direction and size of a result. It is common to report 95% confidence intervals, 

which you will most often see reported as 95% CI. Programmes such as SPSS will 

automatically calculate these confidence intervals for you otherwise you need to 

calculate them by hand. You will want to report the mean and 95% confidence 

levels for the differences between the two related groups. 

If you wish to run a dependent t-test in SPSS then you can find out how to do 

this in our guide here. 

One-way ANOVA 
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What is this test for? 

The one-way analysis of variance (ANOVA) is used to determine whether there 

are any significant differences between the means of three or more independent 

(unrelated) groups. This guide will provide a brief introduction to the one-way 

ANOVA including the assumptions of the test and when you should use this test. 

If you are familiar with the one-way ANOVA then you can skip this guide and go 

straight to how to run this test in SPSS by clicking here. 

What does this test do? 

The one-way ANOVA compares the means between the groups you are interested 

in and determines whether any of those means are significantly different from 

each other. Specifically, it tests the null hypothesis: 

 

where µ = group mean and k = number of groups. If, however, the one-way 

ANOVA returns a significant result then we accept the alternative hypothesis (HA), 

which is that there are at least 2 group means that are significantly different from 

each other. 

At this point, it is important to realise that the one-way ANOVA is an omnibus test 

statistic and cannot tell you which specific groups were significantly different from 

each other, only that at least two groups were. To determine which specific 
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groups differed from each other you need to use a post-hoc test. Post-hoc tests 

are described later in this guide. 

When might you need to use this test? 

If you are dealing with individuals, you are likely to encounter this situation using 

two different types of study design: 

One study design is to recruit a group of individuals and then randomly split this 

group into 3 or more smaller groups, i.e. each subject is allocated to one, and 

only one, group. You then get each group to undertake different tasks (or put 

them under different conditions) and measure the outcome/response on the same 

dependent variable. For example, a researcher wishes to know whether different 

pacing strategies affect the time to complete a marathon. The researcher 

randomly assigns a group of volunteers to either a group that (a) starts slow and 

then increases their speed, (b) starts fast and slows down or (c) runs at a steady 

pace throughout. The time to complete the marathon is the outcome (dependent) 

variable. This study design is illustrated schematically in the Figure below: 

 

When you might use this test is continued on the next page. 
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When might you need to use this test? (cont...) 

A second study design is to recruit a group of individuals and then split them into 

groups based on some independent variable. Again, each individual will be 
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assigned to one group only. This independent variable is sometimes called an 

attribute independent variable because you are splitting the group based on some 

attribute that they possess, e.g. their level of education; every individual has a 

level of education, even if it is "none". Each group is then measured on the same 

dependent variable having undergone the same task or condition (or none at all). 

For example, a researcher is interested in determining whether there are 

differences in leg strength between amateur, semi-professional and professional 

rugby players. The force/strength measured on an isokinetic machine is the 

dependent variable. This type of study design is illustrated schematically in the 

Figure below: 

 

Why not compare groups with multiple t-tests? 

Every time you conduct a t-test there is a chance that you will make a Type 1 

error. An ANOVA controls for these errors so that the Type 1 error remains at 5% 

and you can be more confident that any significant result you find is not just 

down to chance. See our guide on hypothesis testing for more information on 

Type I errors.  

What assumptions does the test make? 

There are three main assumptions, listed here: 

1. The dependent variable is normally distributed in each group that is being 

compared in the one-way ANOVA. So, for example, if we were comparing 

three groups; amateur, semi-professional and professional rugby players; 

on their leg strength, then their leg strength values (dependent variable) 

would have to be normally distributed for the amateur group of players, 

normally distributed for the semi-professionals and normally distributed for 



the professional players. You can test for normality in SPSS (see our guide 

here). 

2. There is homogeneity of variances. This means that the population 

variances in each group are equal. If you use SPSS, Levene's Test for 

Homogeneity of Variances is included in the output when you run a one-

way ANOVA in SPSS (see our One-way ANOVA using SPSS guide). 

3. This is a study design issue that you will so you will need to examine your 

study design to determine whether this could have occurred. 

One-way ANOVA (cont...) 
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What happens if my data fail these assumptions? 

Firstly, don't panic! The first two of these assumptions are easily fixable, even if 

the last assumption is not. Lets go through the options as above: 

1. The one-way ANOVA is considered a robust test against the normality 

assumption. This means that it tolerates violations to its normality 

assumption rather well. As regards the normality of group data, the one-

way ANOVA can tolerate data that is non-normal (skewed or kurtotic 

distributions) with only a small effect on the Type I error rate. However, 

platykurtosis can have a profound effect when your group sizes are small. 

This leaves you with two options: (1) transform your data using various 

algorithms so that the shape of your distributions become normally 

distributed (see our normality guide here) or (2) choose the non-

parametric Kruskal-Wallis H Test which does not require the assumption of 

normality (read our guide on this test here). 

2. There are two tests that you can run that are applicable when the 

assumption of homogeneity of variances has been violated: (1) Welch or 

(2) Brown and Forsythe test. Alternatively, you could run a Kruskal-Wallis 

H Test. For most situations it has been shown that the Welsh test is best. 

Both the Welch and Brown and Forsythe tests are available in SPSS (see 

our One-way ANOVA using SPSS guide). 

3. A lack of independence of cases has been stated as the most important 

assumptions to fail. Often, there is little you can do that offers a good 

solution to this problem. A full explanation of this problem and all 

assumptions mentioned here, including numerical explanations, are 

provided in Intermediate Statistics: A Modern Approach by Dr James 

Stevens. 

How do I run a one-way ANOVA? 

There are numerous ways to run a one-way ANOVA, however, we provide a 

comprehensive, step-by-step guide on how to do this using SPSS. 

How do I report the results of a one-way ANOVA? 

You will have calculated the following results or obtained them from SPSS: 
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Structure of results: 

Source SS df MS F Sig. 

Between SSb k-1 MSb MSb/MSw p value 

Within SSw N-k MSw     

Total SSb + SSw N-1       

An example: 

Source SS df MS F Sig. 

Between 91.476 2 45.733 4.467 .021 

Within 276.400 27 10.237     

Total 367.867 29       

You will want to report this as follows: 

There was a statistically significant difference between groups as determined by 

one-way ANOVA (F(2,27) = 4.467, P = .021). This is all you will need to write for 

the one-way ANOVA per se. However, in reality you will want probably also want 

to report means ± SD for your groups as well as follow-up a significant result 

with post-hoc tests. If you use SPSS then these descriptive statistics will be 

reported in the output along with the result from the one-way ANOVA. The 

general form of writing the result of a one-way ANOVA is as follows: 

 

where df = degrees of freedom.  

It is very important that you do not report the result as "significant difference" 

but that you report it as "statistically significant difference". This is because your 

decision as to whether the result is significant or not should not be based solely 

on your statistical test. Therefore, to indicate to readers that this "significance" is 

a statistical one, include this is your sentence. 

Find out what else you have to do when you have a significant or a not-significant 

ANOVA result on the next page. 

One-way ANOVA (cont...) 
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My p-value is greater than 0.05, what do I do now? 

Report the result of the one-way ANOVA, e.g. "there were no statistically 

significant differences between group means as determined by one-way ANOVA 
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(F(2,27) = 1.397, P = .15)". Not achieving a statistically significant result does 

not mean you should not report group means +/- SD also. However, running 

post-hoc tests is not warranted and should not be carried out.  

My p-value is less than 0.05, what do I do now? 

Firstly, you need to report your results as highlighted in the "How do I report the 

results?" section above. You then need to follow-up the one-way ANOVA by 

running post-hoc tests. 

Homogeneity of variances was violated; how to continue? 

You need to perform the same procedures as in the above three sections but add 

into your results section that this assumption was violated and you needed to run 

a Welch F test. 

What are post-hoc tests? 

Recall from earlier that the ANOVA test tells you whether you have an overall 

difference between your groups but it does not tell you which specific groups 

differed - post-hoc tests do. Because post-hoc tests are run to confirm where the 

differences occurred between groups, they should, therefore, only be run when 

you have a shown an overall significant difference in group means (i.e. a 

significant one-way ANOVA result). Post-hoc tests attempt to control the 

experimentwise error rate usually alpha = 0.05) in the same manner that the 

one-way ANOVA is used instead of multiple t-tests. Post-hoc tests are termed a 

posteriori tests - that is, performed after the event (the event in this case being a 

study). 

Which post-hoc test should I use? 

There are a great number of different post-hoc tests that you can use, however, 

you should only run one post-hoc test - do not run multiple post-hoc tests. For a 

one-way ANOVA, you will probably find that just one of four tests need to be 

considered. If your data meet the assumption of homogeneity of variances then 

either use the Tukey's honestly significant difference (HSD) or Scheffé post-hoc 

tests. Often, Tukey's HSD test is recommended by statisticians as it is not as 

conservative as the Scheffe test (which means that you are more likely to detect 

differences if they exist with Tukey's HSD test). Note that if you use SPSS, 

Tukey's HSD test is simply referred to as "Tukey" in the post-hoc multiple 

comparisons dialogue box). If your data did not meet the homogeneity of 

variances assumption then you should consider running either the Games Howell 

or Dunnett's C post-hoc test. The Games Howell test is generally recommended. 

How should I graphically present my results? 

First off, it is not essential that you present your results in a graphical form. 

However, it can add a lot of clarity to your results. There are a few key points to 

producing a good graph. Firstly, you need to present error bars for each group 

mean. It is customary to use the standard deviation of each group but standard 

error and confidence limits are also used in the literature. You should also make 

sure that the scale is appropriate for what you are measuring. These points and 



more are discussed in our guide on selecting an appropriate graph (guide here). 

Generally, if graphically presenting data from an ANOVA, we recommend using a 

bar chart with standard deviation bars.  

What to do now? 

Now that you understand the one-way ANOVA, go to our guide on how to run the 

test in SPSS here. 

Repeated Measures ANOVA 
50  

Introduction 

Repeated measures ANOVA is the equivalent of the one-way ANOVA but for 

related not independent groups and is the extension of the dependent t-test. A 

Repeated Measures ANOVA is also referred to as a within-subjects ANOVA or 

ANOVA for correlated samples. All these names imply the nature of the Repeated 

Measures ANOVA, that of a test to detect any overall differences between related 

means. There are many complex designs that can make use of repeated 

measures but, throughout this guide, we will be referring to the most simple 

case, that of a one-way Repeated Measures ANOVA. This particular test requires 

one independent variable and one dependent variable. The dependent variable 

needs to be continuous (interval or ratio) and the independent variable 

categorical (either nominal or ordinal). 

When to use a Repeated Measures ANOVA 

We can analysis data using a Repeated Measures ANOVA for two types of study 

design. Studies that investigate either (1) changes in mean scores over three or 

more time points, or (2) differences in mean scores under three or more different 

conditions. For example, for (1), you might be investigating the effect of a 6-

month exercise training programme on blood pressure and want to measure 

blood pressure at 3 separate time points: pre-, midway and post-exercise 

intervention, which would allow you to develop a time-course for any exercise 

effect. For (2), you might get the same subjects to eat different types of cake 

(chocolate, caramel, and lemon) and rate each one for taste, rather than having 

different people flavour each different cake. The important point with these two 

study designs is that the same people are being measured more than once on the 

same dependent variable, hence, why it is called repeated measures. 

In Repeated Measures ANOVA, the independent variable has categories called 

levels or related groups. Where measurements are repeated over time, such as 

when measuring changes in blood pressure due to an exercise-training 

programme, the independent variable is time. Each level (or related group) is 

a specific time point. Hence, for the exercise-training study, there would be three 

time points and each time-point is a level of the independent variable (a 

schematic of a time-course repeated measures design is shown below): 
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Where measurements are made under different conditions, the conditions are the 

levels (or related groups) of the independent variable, e.g. type of cake is the 

independent variable with chocolate, caramel, and lemon cake as the levels of the 

independent variable (a schematic of a different-conditions repeated measures 

design is shown below). It should be noted that often the levels of the 

independent variable are not referred to as conditions but treatments. Which 

one you want to use is up to you, there is no right or wrong naming convention. 

You will also see the independent variable more commonly referred to as the 

within-subjects factor. 



 

The above two schematics have shown an example of each type of Repeated 

Measures ANOVA design, but you will also often see these designs expressed in 

tabular form, such as shown below: 

 

This particular table describes a study with six subjects (S1 to S6) performing 

under three conditions or at three time points (T1 to T3). As highlighted earlier, 

the within-subjects factor could also have been labelled "treatment" instead of 

"time/condition". They all relate to the same thing: subjects undergoing repeated 

measurements at either different time points or under different 

conditions/treatments. 

Hypothesis for Repeated Measures ANOVA 



The Repeated Measures ANOVA tests for whether there are any differences 

between related population means. The null hypothesis (H0) states that the 

means are equal: 

H0: µ1 = µ2 = µ3 = … = µk 

where µ = population mean and k = number of related groups. The alternative 

hypothesis (HA) states that the related population means are not equal (at least 

one mean is different to another mean): 

HA: at least two means are significantly different 

For our exercise-training example, the null hypothesis (H0) is that mean blood 

pressure is the same at all time points (pre-, 3 months, and 6 months). The 

alternative hypothesis is that mean blood pressure is significantly different at one 

or more time points. A Repeated Measures ANOVA will not inform you of where 

the differences between groups lie as it is an omnibus statistical test. The same 

would be true if you were investigating different conditions or treatments rather 

than time points, as used in this example. If your Repeated Measures ANOVA is 

statistically significant then you can run post-hoc tests that can highlight exactly 

where these differences occur. How to run appropriate post-hoc tests for a 

Repeated Measures ANOVA is SPSS can be found (here). 

Logic of the Repeated Measures ANOVA 

The logic behind a Repeated Measures ANOVA is very similar to that of a 

between-subjects ANOVA. Recall that a between-subjects ANOVA partitions total 

variability into between-groups variability (SSb) and within-groups variability 

(SSw), as shown below: 

 

In this design, within-group variability (SSw) is defined as the error variability 

(SSerror). Following division by the appropriate degrees of freedom, a mean sum 

of squares for between-groups (MSb) and within-groups (MSw) is determined and 

an F-statistic is calculated as the ratio of MSb to MSw (or MSerror), as shown below: 

 

A Repeated Measures ANOVA calculates an F-statistic in a similar way: 
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The advantage of a Repeated Measures ANOVA is that whereas within-group 

variability (SSw) expresses the error variability (SSerror) in an independent 

(between-subjects) ANOVA, a Repeated Measures ANOVA can further partition 

this error term, reducing its size, as is illustrated below: 

 

This has the effect of increasing the value of the F-statistic due to the reduction of 

the denominator and leading to an increase in the power of the test to detect 

significant differences between means (this is discussed in more detail later). 

Mathematically, and as illustrated above, we partition the variability attributable 

to the differences between groups (SSconditions) and variability within groups (SSw) 

exactly as we do in a between-subjects (independent) ANOVA. However, with a 

Repeated Measures ANOVA, as we are using the same subjects in each group we 

can remove the variability due to the individual differences between subjects, 

referred to as SSsubjects, from the within-groups variability (SSw). How is this 

achieved? Quite simply, we treat each subject as a block. That is, each subject 

becomes a level of a factor called subjects. We then calculate this variability as 

we do with any between-subjects factor. The ability to subtract SSsubjects will leave 

us with a smaller SSerror term, as highlighted below: 

 

Now that we have removed the between-subjects variability, our new SSerror only 

reflects individual variability to each condition. You might recognise this as the 

interaction effect of subject by conditions; that is, how subjects react to the 

different conditions. Whether this leads to a more powerful test will depend on 

whether the reduction in SSerror more than compensates for the reduction in 

degrees of freedom for the error term (as degrees of freedom go from (n - k) to 



(n - 1)(k - 1) (remembering that there are more subjects in the independent 

ANOVA design). 

The next page of our guide deals with how to calculate a Repeated Measures 

ANOVA. 

Repeated Measures ANOVA (cont...) 
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Calculating a Repeated Measures ANOVA 

In order to provide a demonstration of how to calculate a Repeated Measures 

ANOVA, we shall use the example of a 6-month exercise-training intervention 

where six subjects had their fitness level measured on three occasions: pre-, 3 

months, and post-intervention. Their data is shown below along with some initial 

calculations: 

 

The Repeated Measures ANOVA, like other ANOVAs, generates an F-statistic that 

is used to determine statistical significance. The F-statistic is calculated as below: 

 

You will already have been familiarised with SSconditions from earlier in this guide 

but in some of the calculations in the preceding sections you will see SSconditions 

sometimes referred to as SStime. They both represent the sum of squares for the 

differences between related groups but SStime is a more suitable name when 

dealing with time-course experiments, as we are in this example. The diagram 

below represents the partitioning of variance that occurs in the calculation of a 

Repeated Measures ANOVA. 
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In order to calculate an F-statistic we need to calculate SSconditions and SSerror. 

SSconditions can be calculated directly quite easily (as you will have encountered in 

an independent ANOVA as SSb). Although SSerror can also be calculated directly it 

is somewhat difficult in comparison to deriving it from knowledge of other sums 

of squares which are easier to calculate, namely SSsubjects, and either SST or SSw. 

SSerror can then be calculated in either of two ways: 

 

Both methods to calculate the F-statistic require the calculation of SSconditions and 

SSsubjects but you then have the option to determine SSerror by first calculating 

either SST or SSw. There is no right or wrong method, and other methods exist, it 

is simply personal preference as to which method you choose. For the purposes of 

this demonstration we shall calculate it using the first method, namely calculating 

SSw. 

Calculating SStime 

As mentioned previously, the calculation of SStime is the same as for SSb in an 

independent ANOVA, and can be expressed as: 

 

where k = number of conditions, ni = number of subjects under each (ith) 

condition, = mean score for each (ith) condition, = grand mean. So, in our 

example, we have: 



 

Notice that because we have a repeated measures design, ni is the same for each 

iteration: it is the number of subjects in our design. Hence we can simply multiple 

each group by this number. To better visualize the calculation above, the table 

below highlights the figures used in the calculation: 

 

 

Calculating SSw 

Within-subjects variation (SSw) is also calculated in the same way as in an 

independent ANOVA, expressed as follows: 

 

where xi1 is the score of the ith subject in group 1, xi2 is the score of the ith subject 

in group 2, and xik is the score of the ith subject in group k. In our case, this is: 

 

To better visualize the calculation above, the table below highlights the figures 

used in the calculation: 



 

 

Calculating SSsubjects 

As mentioned earlier, we treat each subject as its own block. In other words, we 

treat each subject as a level of an independent factor called subjects. We can 

then calculate SSsubjects as follows: 

 

where k = number of conditions, mean of subject i, and = grand mean. In our 

case, this is: 

 

To better visualize the calculation above, the table below highlights the figures 

used in the calculation: 

 

 

Calculating SSerror 

We can now calculate SSerror by substitution: 

 

which, in our case, is: 



 

 

Determining MStime, MSerror and the F-statistic 

To determine the mean sum of squares for time (MStime) we divide SStime by its 

associated degrees of freedom (k - 1), where k = number of time points. In our 

case: 

 

We do the same for the mean sum of squares for error (MSerror), this time dividing 

by (n - 1)(k - 1) degrees of freedom, where n = number of subjects and k = 

number of time points. In our case: 

 

Therefore, we can calculate the F-statistic as: 

 

We can now look up (or use a computer programme) to ascertain the critical F-

statistic for our F-distribution with our degrees of freedom for time (dftime) and 

error (dferror) and determine whether our F-statistic indicates a statistically 

significant result. 

We can now look up (or use a computer programme) to ascertain the critical F-

statistic for our F-distribution with our degrees of freedom for time (dftime) and 

error (dferror) and determine whether our F-statistic indicates a statistically 

significant result. 

How to report the result of a Repeated Measures ANOVA is shown on the next 

page. 

Repeated Measures ANOVA (cont...) 
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Reporting the Result of a Repeated Measures ANOVA 

We report the F-statistic from a Repeated Measures ANOVA as: 

F(dftime, dferror) = F value, p = p value 

which for our example would be: 

F(2, 10) = 12.53, p = .002 

This means we can reject the null hypothesis and accept the alternative 

hypothesis. As we will discuss later, there are assumptions and effect sizes we 

can calculate that can alter how we report the above result. However, we would 

otherwise report the above findings for this example exercise study as: 

"There was a statistically significant effect of time on exercise-induced fitness, 

F(2, 10) = 12.53, p < .002." 

or 

"The six-month exercise-training programme had a statistically significant effect 

on fitness levels, F(2, 10) = 12.53, p < .002." 

Tabular Presentation of a Repeated Measures ANOVA 

Normally, the result of a Repeated Measures ANOVA is presented in the written 

text, as above, and not in a tabular form when writing a report. However, most 

statistical programmes, such as SPSS, will report the result of a Repeated 

Measures ANOVA in tabular form. Doing so allows the user to gain a fuller 

understanding of all the calculations that were made by the programme. The 

table below represents the type of table that you will be presented with and what 

the different sections mean. 

 

Most often, the Subjects row is not presented and sometimes the Total row is 

also omitted. The F-statistic found on the first row (time/conditions row) is the F-

statistic that will determine whether there was a significant difference between at 

least two means or not. For our results, omitting the Subjects and Total rows, we 

have: 
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which is similar to the output produced by SPSS. 

Increased Power in a Repeated Measures ANOVA 

The major advantage with running a Repeated Measures ANOVA over an 

independent ANOVA is that the test is generally much more powerful. This 

particular advantage is achieved by the reduction in MSerror (the denominator of 

the F-statistic) that comes from the partitioning of variability due to differences 

between subjects (SSsubjects) from the original error term in an independent 

ANOVA (SSw): i.e. SSerror = SSw - SSsubjects. We achieved a result of F(2, 10) = 

12.53, p < .002, for our example Repeated Measures ANOVA. How does this 

compare to if we had run an independent ANOVA instead? Well, if we ran through 

the calculations we would have ended up with a result of F(2, 15) = 1.504, p = 

.254, for the independent ANOVA. We can clearly see the advantage of using the 

same subjects in a Repeated Measures ANOVA as opposed to different subjects. 

For our exercise-training example, the illustration below shows that after taking 

away SSsubjects from SSw we are left with an error term (SSerror) that is only 8% as 

large as the independent ANOVA error term. 

 

This does not lead to an automatic increase in the F-statistic as there are a 

greater number of degrees of freedom for SSw than SSerror. However, it is usual 

for SSsubjects to account for such a large percentage of the within-groups variability 



that the reduction in the error term is large enough to more than compensate for 

the loss in the degrees of freedom (as used in selecting an F-distribution). 

Effect Size for Repeated Measures ANOVA 

It is becoming more common to report effect sizes in Partial eta-squared is where 

the the SSsubjects has been removed from the denominator (and is what is 

produced by SPSS): 

 

So, for our example, this would lead to a partial eta-squared of: 

 

Underlying Assumptions: Normality 

Similar to the other ANOVA tests, each level of the independent variable needs to 

be approximately normally distributed. How to check for this is provided in our 

Testing for Normality in SPSS guide. 

Underlying Assumptions: Sphericity 

The concept of sphericity, for all intents and purposes, is the repeated measures 

equivalent of homogeneity of variances. An explanation of sphericity is provided 

in our Sphericity guide. Testing for sphericity is an option in SPSS using Mauchly's 

Test for Sphericity as part of the GLM Repeated Measures procedure. A guide on 

running a Repeated Measures ANOVA in SPSS can be found here. We can write up 

our results (not the exercise example), where we have included Mauchly's Test 

for Sphericity as: 

"Mauchly's Test of Sphericity indicated that the assumption of sphericity had been 

violated, χ2(2) = 22.115, p < .0005, and, therefore, a Greenhouse-Geisser 

correction was used. There was a significant effect of time on cholesterol 

concentration, F(1.171, 38) = 21.032, p < .0005." 

 

Pearson Product-Moment Correlation 
47  

What does this test do? 

The Pearson product-moment correlation coefficient (or Pearson correlation 

coefficient for short) is a measure of the strength of a linear association between 

two variables and is denoted by r. Basically, a Pearson product-moment 

correlation attempts to draw a line of best fit through the data of two variables, 

and the Pearson correlation coefficient, r, indicates how far away all these data 
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points are to this line of best fit (how well the data points fit this new model/line 

of best fit). 

What values can the Pearson correlation coefficient take? 

The Pearson correlation coefficient, r, can take a range of values from +1 to -1. A 

value of 0 indicates that there is no association between the two variables. A 

value greater than 0 indicates a positive association, that is, as the value of one 

variable increases so does the value of the other variable. A value less than 0 

indicates a negative association, that is, as the value of one variable increases 

the value of the other variable decreases. This is shown in the diagram below 

(click the image to enlarge): 

 

How can we determine the strength of association based on the Pearson 

correlation coefficient? 

The stronger the association of the two variables the closer the Pearson 

correlation coefficient, r, will be to either +1 or -1 depending on whether the 

relationship is positive or negative, respectively. Achieving a value of +1 or -1 

means that all your data points are included on the line of best fit - there are no 

data points that show any variation away from this line. Values for r between +1 

and -1 (for example, r = 0.8 or -0.4) indicate that there is variation around the 

line of best fit. The closer the value of r to 0 the greater the variation around the 

line of best fit. Different relationships and their correlation coefficients are shown 

in the diagram below (click the image to enlarge): 



 

Are there guidelines to interpreting Pearson's correlation coefficient? 

Yes, the following guidelines have been proposed: 

  Coefficient, r 

Strength of Association Positive Negative 

Small .1 to .3 -0.1 to -0.3 

Medium .3 to .5 -0.3 to -0.5 

Large .5 to 1.0 -0.5 to -1.0 

Remember that these values are guidelines and whether an association is strong 

or not will also depend on what you are measuring. 

Can you use any type of variable for Pearson's correlation coefficient? 

No, the two variables have to be measured on either an interval or ratio scale. 

However, both variables do not need to be measured on the same scale, e.g. one 

variable can be ratio and one can be interval. Further information about types of 

variable can be found in our Types of Variable guide. If you have ordinal data 

then you will want to use Spearman's Rank Order Correlation or a Kendall's Tau 

Correlation instead of the Pearson product-moment correlation. 

Do the two variables have to be measured in the same units? 

No, the two variables can be measured in entirely different units. For example, 

you could correlate a person's age with their blood sugar levels. Here, the units 

are completely different; age is measured in years and blood sugar level 

measured in mmol/L (a measure of concentration). Indeed, the calculations for 

Pearson's correlation coefficient were designed such that the units of 
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measurement do not affect the calculation - this allows the correlation coefficient 

to be comparable and not influenced by the units of the variables used. 

What about dependent and independent variables? 

The Pearson product-moment correlation does not take into consideration 

whether a variable has been classified as a dependent or independent variable. It 

treats all variables equally. For example, you might want to find out whether 

basketball performance is correlated to a person's height. You might, therefore, 

plot a graph of performance against height and calculate the Pearson correlation 

coefficient. Lets say, for example, that r = .67. That is, as height increases so 

does basketball performance. This makes sense. However, if we plotted the 

variables the other way around and wanted to determine whether a person's 

height was determined by their basketball performance (which makes no sense) 

we would still get r = .67. This is because the Pearson correlation coefficient 

makes no account of any theory behind why you chose the two variables to 

compare. This is illustrated below: 

 

Does the Pearson correlation coefficient indicate the slope of the line? 

It is important to realise that the Pearson correlation coefficient, r, does not 

represent the slope of the line of best fit. Therefore, if you get a Pearson 

correlation coefficient of +1 this does not mean that for every unit increase in one 

variable there is a unit increase in another. It simply means that there is no 

variation between the data points and the line of best fit. This is illustrated below: 



 

What assumptions does Pearson's correlation make? 

There are four assumptions that are made with respect to Pearson's correlation: 

1. The variables must be either interval or ratio measurements (see our 

Types of Variable guide for further details). 

2. The variables must be approximately normally distributed (see our Testing 

for Normality guide for further details). 

3. There is a linear relationship between the two variables. We discuss this 

later in this guide (jump to this section here). 

4. Outliers are either kept to a minimum or are removed entirely. We also 

discuss this later in this guide (jump to this section here). 

5. There is homoscedasticity of the data. This is discussed later in this guide 

(jump to this section here). 

How can you detect a linear relationship? 

To test to see whether your two variables form a linear relationship you simply 

need to plot them on a graph (a scatterplot, for example) and visually inspect the 

graph's shape. In the diagram below (click image to enlarge) you will find a few 

different examples of a linear relationship and some non-linear relationships. It is 

not appropriate to analyse a non-linear relationship using a Pearson product-

moment correlation. 
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Go to the next page for more. 
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How can you detect outliers? 

An outlier (in correlation analysis) is a data point that does not fit the general 

trend of your data but would appear to be a wayward (extreme) value and not 

what you would expect compared to the rest of your data points. You can detect 

outliers in a similar way to how you detect a linear relationship, by simply plotting 

the two variables against each other on a graph and visually inspecting the graph 

for wayward (extreme) points. You can then either remove or manipulate that 

particular point as long as you can justify why you did so (there are far more 

robust methods for detecting outliers in regression analysis). Alternatively, if you 

cannot justify removing the data point(s) then you can run a non-parametric test 

such as Spearman's Rank Order Correlation or Kendall's Tau Correlation instead, 

which are much less sensitive to outliers. This might be your best approach if you 

cannot justify removing the outlier. The diagram below indicates what a potential 

outlier might look like: 

 

Why is testing for outliers so important? 

Outliers can have a very large effect on the line of best fit and the Pearson 

correlation coefficient, which can lead to very different conclusions regarding your 

data. This point is most easily illustrated by studying scatterplots of a linear 

relationship with an outlier included and after its removal, with respect to both 

the line of best fit and the correlation coefficient. This is illustrated in the diagram 

below: 
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What is homoscedasticity? 

Homoscedasticity basically means that the variances along the line of best fit 

remain similar as you move along the line. It is required that your data show 

homoscedasticity for you to run a Pearson product-moment correlation. 

Homoscedasticity is most easily demonstrated diagrammatically as below: 

 

Can you establish cause-and-effect? 

No, the Pearson correlation cannot determine a cause-and-effect relationship. It 

can only establish the strength of the association between two variables. As 

stated earlier, it does not even distinguish between independent and dependent 

variables. 

How do I report the output of a Pearson product-moment correlation? 

You need to state that you used the Pearson product-moment correlation and 

report the value of the correlation coefficient, r, as well as the degrees of freedom 

(df). You should express the result as follows: 



 

where the degrees of freedom (df) is the number of data points minus 2 (N - 2). 

If you have not tested the significance of the correlation then leave that section 

out of the results. 

Can I determine whether the association is statistically significant? 

Yes, the easy way to do this is through a statistical programme, such as SPSS. 

We provide a guide on how to do this, which you can find here. You need to be 

careful how you interpret the statistical significance of a correlation. If your 

correlation coefficient has been determined to be statistically significant this does 

not mean that you have a strong association. It simply tests the null hypothesis 

that there is no relationship. By rejecting the null hypothesis you accept the 

alternative hypothesis that states that there is a relationship but with no 

information about the strength of the relationship or its importance. 

What is the Coefficient of Determination? 

The coefficient of determination, r2, is the square of the Pearson correlation 

coefficient r (i.e. r2). So, for example, a Pearson correlation coefficient of 0.6 

would result in a coefficient of determination of 0.62, which is 0.36. Therefore, r2 

= 0.36. The coefficient of determination, with respect to correlation, is the 

proportion of the variance that is shared by both variables. It gives a measure of 

the amount of variation that can be explained by the model (the correlation is the 

model). It is sometimes expressed as a percentage (for example, 36% instead of 

0.36) when we discuss the proportion of variance explained by the correlation. 

However, we must never write r2 = 36%, or any other percentage. We must 

always write it as a proportion, e.g. r2 = 0.36. 

To run a Pearson correlation in SPSS, go to our guide here. 
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An outlier (in correlation analysis) is a data point that does not fit the general 

trend of your data but would appear to be a wayward (extreme) value and not 
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robust methods for detecting outliers in regression analysis). Alternatively, if you 

cannot justify removing the data point(s) then you can run a non-parametric test 

such as Spearman's Rank Order Correlation or Kendall's Tau Correlation instead, 

which are much less sensitive to outliers. This might be your best approach if you 

cannot justify removing the outlier. The diagram below indicates what a potential 

outlier might look like: 

 

Why is testing for outliers so important? 

Outliers can have a very large effect on the line of best fit and the Pearson 

correlation coefficient, which can lead to very different conclusions regarding your 

data. This point is most easily illustrated by studying scatterplots of a linear 

relationship with an outlier included and after its removal, with respect to both 

the line of best fit and the correlation coefficient. This is illustrated in the diagram 

below: 

 

What is homoscedasticity? 

Homoscedasticity basically means that the variances along the line of best fit 

remain similar as you move along the line. It is required that your data show 

homoscedasticity for you to run a Pearson product-moment correlation. 

Homoscedasticity is most easily demonstrated diagrammatically as below: 
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Can you establish cause-and-effect? 

No, the Pearson correlation cannot determine a cause-and-effect relationship. It 

can only establish the strength of the association between two variables. As 

stated earlier, it does not even distinguish between independent and dependent 

variables. 

How do I report the output of a Pearson product-moment correlation? 

You need to state that you used the Pearson product-moment correlation and 

report the value of the correlation coefficient, r, as well as the degrees of freedom 

(df). You should express the result as follows: 

 

where the degrees of freedom (df) is the number of data points minus 2 (N - 2). 

If you have not tested the significance of the correlation then leave that section 

out of the results. 

Can I determine whether the association is statistically significant? 

Yes, the easy way to do this is through a statistical programme, such as SPSS. 

We provide a guide on how to do this, which you can find here. You need to be 

careful how you interpret the statistical significance of a correlation. If your 

correlation coefficient has been determined to be statistically significant this does 

not mean that you have a strong association. It simply tests the null hypothesis 

that there is no relationship. By rejecting the null hypothesis you accept the 

alternative hypothesis that states that there is a relationship but with no 

information about the strength of the relationship or its importance. 
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What is the Coefficient of Determination? 

The coefficient of determination, r2, is the square of the Pearson correlation 

coefficient r (i.e. r2). So, for example, a Pearson correlation coefficient of 0.6 

would result in a coefficient of determination of 0.62, which is 0.36. Therefore, r2 

= 0.36. The coefficient of determination, with respect to correlation, is the 

proportion of the variance that is shared by both variables. It gives a measure of 

the amount of variation that can be explained by the model (the correlation is the 

model). It is sometimes expressed as a percentage (for example, 36% instead of 

0.36) when we discuss the proportion of variance explained by the correlation. 

However, we must never write r2 = 36%, or any other percentage. We must 

always write it as a proportion, e.g. r2 = 0.36. 

To run a Pearson correlation in SPSS, go to our guide here. 
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cannot justify removing the data point(s) then you can run a non-parametric test 
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which are much less sensitive to outliers. This might be your best approach if you 
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Why is testing for outliers so important? 
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Outliers can have a very large effect on the line of best fit and the Pearson 

correlation coefficient, which can lead to very different conclusions regarding your 

data. This point is most easily illustrated by studying scatterplots of a linear 

relationship with an outlier included and after its removal, with respect to both 

the line of best fit and the correlation coefficient. This is illustrated in the diagram 

below: 

 

What is homoscedasticity? 

Homoscedasticity basically means that the variances along the line of best fit 

remain similar as you move along the line. It is required that your data show 

homoscedasticity for you to run a Pearson product-moment correlation. 

Homoscedasticity is most easily demonstrated diagrammatically as below: 

 

Can you establish cause-and-effect? 

No, the Pearson correlation cannot determine a cause-and-effect relationship. It 

can only establish the strength of the association between two variables. As 

stated earlier, it does not even distinguish between independent and dependent 

variables. 

How do I report the output of a Pearson product-moment correlation? 



You need to state that you used the Pearson product-moment correlation and 

report the value of the correlation coefficient, r, as well as the degrees of freedom 

(df). You should express the result as follows: 

 

where the degrees of freedom (df) is the number of data points minus 2 (N - 2). 

If you have not tested the significance of the correlation then leave that section 

out of the results. 

Can I determine whether the association is statistically significant? 

Yes, the easy way to do this is through a statistical programme, such as SPSS. 

We provide a guide on how to do this, which you can find here. You need to be 

careful how you interpret the statistical significance of a correlation. If your 

correlation coefficient has been determined to be statistically significant this does 

not mean that you have a strong association. It simply tests the null hypothesis 

that there is no relationship. By rejecting the null hypothesis you accept the 

alternative hypothesis that states that there is a relationship but with no 

information about the strength of the relationship or its importance. 

What is the Coefficient of Determination? 

The coefficient of determination, r2, is the square of the Pearson correlation 

coefficient r (i.e. r2). So, for example, a Pearson correlation coefficient of 0.6 

would result in a coefficient of determination of 0.62, which is 0.36. Therefore, r2 

= 0.36. The coefficient of determination, with respect to correlation, is the 

proportion of the variance that is shared by both variables. It gives a measure of 

the amount of variation that can be explained by the model (the correlation is the 

model). It is sometimes expressed as a percentage (for example, 36% instead of 

0.36) when we discuss the proportion of variance explained by the correlation. 

However, we must never write r2 = 36%, or any other percentage. We must 

always write it as a proportion, e.g. r2 = 0.36. 
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This guide will tell you when you should use Spearman's rank-order correlation to 

analyse your data, what assumptions you have to satisfy, how to calculate it, and 

how to report it. If you want to know how to run a Spearman correlation in SPSS 

then go to our guide here. If you want to calculate the correlation coefficient 

manually then we have a calculator you can use that also shows all the working 

out. This can be found at our Laerd Mathematics site here. 

When should you use the Spearman's Rank-Order Correlation? 
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The Spearman's rank-order correlation is the nonparametric version of the 

Pearson product-moment correlation. Spearman's correlation coefficient, ( , also 

signified by rs) measures the strength of association between two ranked 

variables. 

What are the assumptions of the test? 

You need two variables that are either ordinal, interval or ratio (see our Types of 

Variable guide if you need clarification). Although you would normally hope to use 

a Pearson product-moment correlation on interval or ratio data, the Spearman 

correlation can be used when the assumptions of the Pearson correlation are 

markedly violated. A second assumption is that there is a monotonic relationship 

between your variables. 

What is a monotonic relationship? 

A monotonic relationship is a relationship that does one of the following: (1) as 

the value of one variable increases so does the value of the other variable or (2) 

as the value of one variable increases the other variable value decreases. 

Examples of monotonic and non-monotonic relationships are presented in the 

diagram below (click image to enlarge): 

 

Why is a monotonic relationship important to Spearman's correlation? 

A monotonic relationship is an important underlying assumption of the Spearman 

rank-order correlation. It is also important to recognize the assumption of a 

monotonic relationship is less restrictive than a linear relationship (an assumption 

that has to be met by the Pearson product-moment correlation). The middle 

image above illustrates this point well: A non-linear relationship exists but the 

relationship is monotonic and is suitable for analysis by Spearman's correlation 

but not by Pearson's correlation. 

How to rank data? 

In some cases your data might already be ranked but often you will find that you 

need to rank the data yourself (or use SPSS to do it for you). Thankfully, ranking 

data is not a difficult task and is easily achieved by working through your data in 

a table. Let us consider the following example data regarding the marks achieved 

in a maths and English exam: 
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English 56 75 45 71 61 64 58 80 76 61 

Maths 66 70 40 60 65 56 59 77 67 63 

The procedure for ranking these scores is as follows: 

First, create a table with four columns and label them as below: 

English (mark) Maths (mark) Rank (English) Rank (maths) 

56 66 9 4 

75 70 3 2 

45 40 10 10 

71 60 4 7 

61 65 6.5 5 

64 56 5 9 

58 59 8 8 

80 77 1 1 

76 67 2 3 

61 63 6.5 6 

You need to rank the scores for maths and English separately. The score with the 

highest value should be labelled "1" and the lowest score should be labelled "10" 

(if your data set has more than 10 cases then the lowest score will be how many 

cases you have). Look carefully at the two individuals that scored 61 in the 

English exam (highlighted in bold). Notice their joint rank of 6.5. This is because 

when you have two identical values in the data (called a "tie") you need to take 

the average of the ranks that they would have otherwise occupied. We do this as, 

in this example, we have no way of knowing which score should be put in rank 6 

and which score should be ranked 7. Therefore, you will notice that the ranks of 6 

and 7 do not exist for English. These two ranks have been averaged ((6 + 7)/2 = 

6.5) and assigned to each of these "tied" scores. 

What is the definition of Spearman's rank-order correlation? 

There are two methods to calculate Spearman's rank-order correlation depending 

on whether: (1) your data does not have tied ranks or (2) your data has tied 

ranks. The formula for when there are no tied ranks is: 

 

where di = difference in paired ranks and n = number of cases. The formula to 

use when there are tied ranks is: 

 

where i = paired score. 
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What values can the Spearman correlation coefficient, rs, take? 

The Spearman correlation coefficient, rs, can take values from +1 to -1. A rs of +1 

indicates a perfect association of ranks, a rs of zero indicates no association 

between ranks and a rs of -1 indicates a perfect negative association of ranks. 

The closer rs is to zero, the weaker the association between the ranks. 

An example of calculating Spearman's correlation 

To calculate a Spearman rank-order correlation on data without any ties we will 

use the following data: 

English 56 75 45 71 62 64 58 80 76 61 

Maths 66 70 40 60 65 56 59 77 67 63 

We then complete the following table: 

English (mark) Maths (mark) Rank (English) Rank (maths) d d
2
 

56 66 9 4 5 25 

75 70 3 2 1 1 

45 40 10 10 0 0 

71 60 4 7 3 9 

62 65 6.5 5 1 1 

64 56 5 9 4 16 

58 59 8 8 0 0 

80 77 1 1 0 0 

76 67 2 3 1 1 

61 63 6.5 6 1 1 

Where d = difference between ranks and d2 = difference squared. 

We then calculate the following: 

 

We then substitute this into the main equation with the other information as 

follows: 

https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide-2.php##


 

as n = 10. Hence, we have a of 0.67. This indicates a strong positive 

relationship between the ranks individuals obtained in the maths and English 

exam. That is, the higher you ranked in maths, the higher you ranked in English 

also, and vice versa. 

How do you report a Spearman's correlation? 

How you report a Spearman's correlation coefficient depends on whether or not 

you have determined the statistical significance of the coefficient. If you have 

simply run the Spearman correlation without any statistical significance tests then 

you are able to simple state the value of the coefficient as shown below: 

 

However, if you have also run statistical significance tests then you need to 

include some more information as shown below: 

 

where df = N - 2, where N = number of pairwise cases. 

How do you express the hypothesis for this test? 

The general form of a null hypothesis for a Spearman correlation is: 

H0: There is no association between the two variables [in the population]. 

Remember, you are making an inference from your sample to the population that 

the sample is supposed to represent. However, as this a general understanding of 

an inferential statistical test, it is often not included. A null hypothesis statement 

for the example used earlier in this guide would be: 

H0: There is no association between maths and English marks. 
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How do I interpret a statistically significant Spearman correlation? 

It is important to realize that statistical significance does not indicate the strength 

of the Spearman rank-order correlation. In fact, the statistical significance testing 

of the Spearman correlation does not provide you with any information about the 

strength of the relationship. Thus, achieving a value of P = 0.001, for example, 

does not mean that the relationship is stronger than if you achieved a value of P 

= 0.04. This is because the significance test is investigating whether you can 

accept or reject the null hypothesis. If you set α = 0.05 then achieving a 

statistically significant Spearman rank-order correlation means that you can be 

sure that there is less than a 5% chance that the strength of the relationship you 

found (your rho coefficient) happened by chance if the null hypothesis were true. 

Testing Assumptions 

Sphericity 
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Introduction 

ANOVAs with repeated measures (within-subject factors) are particularly 

susceptible to the violation of the assumption of sphericity. Sphericity is the 

condition where the variances of the differences between all combinations of 

related groups (levels) are equal. Violation of sphericity is when the variances of 

the differences between all combinations of related groups are not equal. 

Sphericity can be likened to homogeneity of variances in a between-subjects 

ANOVA. 

The violation of sphericity is serious for the Repeated Measures ANOVA, with 

violation causing the test to become too liberal (i.e. an increase in the Type I 

error rate). Determining whether sphericity has been violated is, therefore, very 

important. Luckily, if violations of sphericity do occur then corrections have been 

developed to produce a more valid critical F-value (i.e. reduce the increase in 

Type I error rate). This is achieved by estimating the degree to which sphericity 

has been violated and applying a correction factor to the degrees of freedom of 

the F-distribution. We will discuss this in more detail later in this guide. Firstly, we 

will illustrate what sphericity is by way of an example. 

An Example of Sphericity 

To illustrate the concept of sphericity as equality of variance of the differences 

between each pair of values, we will analyse the fictitious data in the Table 1 

below. This data is from a fictitious study that measured aerobic capacity (units: 

ml/min/kg) at three time points (Time 1, Time 2, Time 3) for six subjects. 
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Firstly, as we are interested in the differences between related groups (time 

points) we must calculate the differences between each combination of related 

group (time point) (the last three columns in the table above). The more time 

points (or conditions) the greater the number of possible combinations. For three 

time points, we have three different combinations. We then need to calculate the 

variance of each group difference, again presented in the table above. Looking at 

our results, at first glance, it would appear that the variances between the paired 

differences are not equal (13.9 vs. 17.4 vs. 3.1); the variance of the difference 

between Time 2 and Time 3 is much less than the other two combinations. This 

might lead us to conclude that our data violates the assumption of sphericity. We 

can, however, test our data for sphericity using a formal test called Mauchly's 

Test of Sphericity. 

Testing for Sphericity: Mauchly's Test of Sphericity 

As just mentioned, Mauchly's Test of Sphericity is a formal way of testing the 

assumption of sphericity. Although this test has been heavily criticised, often 

failing to detect departures from sphericity in small samples and over-detecting 

them in large samples, it is nonetheless a commonly used test. This is probably 

due to its automatic print out in SPSS for repeated measures ANOVAs and the 

lack of an otherwise readily available test. However, despite these shortcomings, 

because it is widely used, we will explain the test in this section and how to 

interpret it.  

Mauchly's Test of Sphericity tests the null hypothesis that the variances of the 

differences are equal. Thus, if Mauchly's Test of Sphericity is statistically 

significant (p < .05), we can reject the null hypothesis and accept the alternative 

hypothesis that the variances of the differences are not equal (i.e. sphericity has 

been violated). Results from Mauchly's Test of Sphericity are shown below for our 

example data (see the red section below): 

 

The results of this test show that sphericity has not been violated (p = .188) (you 

need to look under the "Sig." column). We can thus report the result of Mauchly's 

Test of Sphericity as follows: 



"Mauchly's Test of Sphericity indicated that the assumption of sphericity had not 

been violated, χ2(2) = 3.343, p = .188." 

You might have noticed the discrepancy between the result of Mauchly's Test of 

Sphericity, which indicates that the assumption of sphericity is not violated, and 

the large differences in the variances calculated earlier (13.9 vs. 17.4 vs. 3.1), 

suggesting violation of the assumption of sphericity. Unfortunately, this is one of 

the problems of Mauchly's test when dealing with small sample sizes, which was 

mentioned earlier. 

If your data does not violate the assumption of sphericity then you do not need to 

modify your degrees of freedom. [If you are using SPSS, then your results will be 

presented in the "sphericity assumed" row(s).] Not violating this assumption 

means that the F-statistic that you have calculated is valid and can be used to 

determine statistical significance. If, however, the assumption of sphericity is 

violated, the F-statistic is positively biased rendering it invalid and increasing the 

risk of a Type I error. To overcome this problem corrections must be applied to 

the degrees of freedom (df), such that a valid critical F-value can be obtained. It 

should be noted that it is not uncommon to find that sphericity has been violated. 

The corrections that you will encounter to combat the violation of the assumption 

of sphericity are the lower-bound estimate, Greenhouse-Geisser correction 

and the Huynh-Feldt correction. These corrections rely on estimating 

sphericity. 

Estimating Sphericity (ε) and How Corrections Work 

The degree to which sphericity is present, or not, is represented by a statistic 

called epsilon (ε). An epsilon of 1 (i.e. ε = 1) indicates that the condition of 

sphericity is exactly met. The further epsilon decreases below 1 (i.e. ε < 1), the 

greater the violation of sphericity. Therefore, you can think of epsilon as a 

statistic that describes the degree to which sphericity has been violated. The 

lowest value that epsilon (ε) can take is called the lower-bound estimate whilst 

both the Greenhouse-Geisser and the Huynd-Feldt procedures attempt to 

estimate epsilon (ε) albeit in different ways (it is an estimate as we are dealing 

with samples not populations). For this reason, the estimates of sphericity (ε) 

tend to always be different depending on which procedure is used. By estimating 

epsilon (ε), all these procedures then use their sphericity estimate (ε) to correct 

the degrees of freedom for the F-distribution. As you will see later on in this 

guide, the actual value of the F-statistic does not change as a result of applying 

the corrections. 

So what effect are the corrections on the degrees of freedom having? The answer 

to this lies in how the critical values for the F-statistic are calculated. The 

corrections affect the degrees of freedom of the F-distribution such that larger 

critical values are used (i.e. the p-value increases). This is to counteract the fact 

that when the assumption of sphericity is violated there is an increase in Type I 

errors due to the critical values in the F-table being too small. These corrections 

attempt to correct this bias. 



Recall that the degrees of freedom used in the calculation of the F-statistic in a 

Repeated Measures ANOVA are: 

 

where k = number of repeated measures and n = number of subjects. The three 

corrections (lower-bound estimate, Greenhouse-Geisser and Huynh-Feldt 

correction) all alter the degrees of freedom by multiplying these degrees of 

freedom by their estimated epsilon (ε) as below: 

 

Please note that the different corrections use different mathematical symbols for 

estimated epsilon (ε), which will be shown later on. 

Also recall that the F-statistic is calculated as: 

 

As stated earlier, these corrections do not lead to a different F-statistic. But how 

does the F-statistic remain unaffected when the degrees of freedom are being 

altered? This is because the estimated epsilon is added as a multiplier to the 

degrees of freedom for both the numerator and denominator, and thus they 

cancel each other out, as shown below: 

 

For our example, we have the three estimates of epsilon (ε) calculated as follows 

(using SPSS): 

 

Lower-Bound Estimate 

The lowest value that epsilon (ε) can take is called the lower-bound estimate (or 

the lower-bound adjustment) and is calculated as: 

 



where k = number of repeated measures. As you can see from the above 

equation, the greater the number of repeated measures, the greater the potential 

for the violation of sphericity. So, for our example which has three repeated 

measures, the lowest value epsilon (ε) can take would be: 

 

This represents the greatest possible violation of sphericity and, therefore, using 

the lower-bound estimate means that you are correcting your degrees of freedom 

for the "worst case scenario". This provides a correction that is far too 

conservative (incorrectly rejecting the null hypothesis). This correction has been 

superseded by the Greenhouse-Geisser and Huynd-Feldt corrections, and the 

lower-bound estimate is no longer a recommended correction, i.e. do not use the 

lower-bound estimate. 

The other types of correction and interpreting statistical printouts of sphericity are 

to be found on the next page. 

Sphericity (cont...) 
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Greenhouse-Geisser Correction 

The Greenhouse-Geisser procedure estimates epsilon (referred to as ) in order 

to correct the degrees of freedom of the F-distribution as has been mentioned 

previously, and shown below: 

 

Using our prior example, and if sphericity had been violated, we would have: 

 

So our F-test result is corrected from F (2,10) = 12.534, p = .002 to F 

(1.277,6.384) = 12.534, p = .009 (degrees of freedom are slightly different due 

to rounding). The correction has elicited a more accurate significance value; it 

has increased the p-value to compensate for the fact that the test is too liberal 

when sphericity is violated. 

Huynd-Feldt Correction 

As with the Greenhouse-Geisser correction, the Huynd-Feldt correction estimates 

epsilon, (represented as ) in order to correct the degrees of freedom of the F-

distribution as shown below: 
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Using our prior example, and if sphericity had been violated, we would have: 

 

So our F test result is corrected from F (2,10) = 12.534, p = .002 to F 

(1.520,7.602) = 12.534, p = .005 (degrees of freedom are slightly different due 

to rounding). As with the Greenhouse-Geisser correction, this correction has 

elicited a more accurate significance value; it has increased the p-value to 

compensate for the fact that the test is too liberal when sphericity is violated. 

Greenhouse-Geisser vs. Huynd-Feldt Correction 

The Greenhouse-Geisser correction tends to underestimate epsilon (ε) when 

epsilon (ε) is close to 1 (i.e. it is a conservative correction) whilst the Huynd-Feldt 

correction tends to overestimate epsilon (ε) (i.e. it is a more liberal correction). 

Generally, the recommendation is to use the Greenhouse-Geisser correction, 

especially if estimated epsilon (ε) is less than 0.75. However, some statisticians 

recommend using the Huynd-Feldt correction if estimated epsilon (ε) is greater 

than 0.75. In practice, both corrections produce very similar corrections, so if 

estimated epsilon (ε) is greater than 0.75, you can equally justify using either. 

Interpreting Statistical Printouts 

To see all the above in action, consider the data set we have been using for this 

article. We can see from our earlier table that, for our data set, the estimated 

epsilon (ε) using the Greenhouse-Geisser method is 0.638 (i.e. = 0.638). The 

following table shows the output of our Repeated Measures ANOVA (in SPSS): 

 

In SPSS, the "Sphericity Assumed" row(s) are where sphericity has not been 

violated and, therefore, represents the normal calculations we would make to 

calculate a significance value for a Repeated Measures ANOVA. Notice how the 

sum of squares and F-statistic are identical regardless of whether or which 

correction is applied (shown below in blue). This further highlights that the 

corrections are not being applied to the partitioning of sum of squares but to the 

degrees of freedom. 



 

We can see in the diagram above that the corrections have altered the degrees of 

freedom (df), which in turn have altered the Mean Sum of Squares (MS) for both 

the TIME factor and its error, and have altered the level of significance of the F-

statistic. 

Univariate vs. Multivariate Analysis 

An alternative method is to use a MANOVA instead of a Repeated Measures 

ANOVA. The reason for doing this is that the MANOVA does not require the 

assumption of sphericity. There are a number of reasons for choosing a MANOVA 

over a Repeated Measures ANOVA and vice-versa and we will be adding this 

information to this guide soon. 

 

 

Population Standard Deviation 

 Sample Standard Deviation 
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