| Lecture | | Ch/Pg | | |--|---|-----------------------------|--| | I. Course Orientation & Introduction | | | | | 2. Homeostasis,
Adaptation, & Cell
Death | Principles Adaptive Responses (Hypertrophy, Hyperplasia, Atrophy, Metaplasia) Cell Injury (reversible/irriversible) Cell Death Morphology of Cell Death | Ch I
Pg. 1-5
Pg. 8-11 | | | 3. Cell Injury & Death | Causes Principles & mechanisms (Mitochondria, Ca²⁺, Free radicals & ROS, Membrane damage) Mechanisms in practice (Hypoxia Ischemia, Reperfusion, Chemical) | Pg. 6-7
Pg. 11-18 | | | 4. Apoptosis | Definition Principles Causes Mechanisms (Mitochondrial, Death receptor) Mechanisms in practice (Growth factor deprivation, DNA damage, Protein damage, role in immunity) Necroptosis | Pg. 18-22 | | | 5. | Autophagy Intracellular accumulations Pathologic calcification Cellular aging | Pg. 22-28 | | | lecture | topics | pages | |---|---|----------------| | 6. Inflammation | Overview of inflammation and Vascular changes | 29-34 | | 7. inflammation | Cellular events in inflammation | 35-40 | | 8. Chemical mediators I | Cell derived mediators | 44-50 | | 9. Chemical mediators 2 | Plasma derived mediators Morphology of acute inflammation | 50-53
43-44 | | 10. Chronic inflammation and systemic effects of inflammation | | 53-59 | | | | | _____ | Lecture | | Ch/Pg | |---|---|--------------------| | II. Cell proliferation in tissue repair | Overview of tissue repair Cell proliferation Stem cells Growth factors | Ch2
Pg. 58-62 | | 12. Role of the ECM in tissue repair | Extracellular matrix Structure Components Function Regeneration in tissue repair Overview of tissue response to injury - revisited | Pg. 63-65 | | 13 & 14 Scarring & Fibrosis | Steps Angiogenesis Activation of fibroblasts & ECM deposition Maturation & remodelling Factors influencing tissue repair Clinical examples | Pg. 66-72 | | 15. Neoplasia | Definition & Nomenclature Benign & Malignant neoplasia Characteristics Differentiation & Anaplasia Rate of growth Local invasion Metastasis | Ch5
Pg. 161-169 | | Lecture | | Ch/Pg | |--|---|-------------| | 16. Epidemiology & introduction to the molecular biology of cancer | Epidemiology Environment Age Heredity Acquired pre-neoplastic lesions | Pg. 169-173 | | 17. Genetics & epigenetics of cancer | Molecular Biology of Cancer (introduction) Karyotypic changes Translocation Deletion Amplification Aneuploidy miRNA Epigenetic changes (methylation) Molecular Biology of Cancer (initiation & progression) Hallmarks of Cancer (introduction) | Pg. 173-178 | | 18. Hallmarks of Cancer - Growth & Growth inhibition | Growth factors & their receptors Signal transduction & transcription Cell cycle control (cyclins & CDKs) The first tumor suppressor gene: RB | Pg. 178-184 | | 19. Hallmarks of Cancer - Growth inhibition & Evasion of death | Guardian of the genome: p53 TGFβ signalling Contact inhibition: NF2 & APC Evasion of cell death | Pg. 185-190 | | Lecture | | Ch/Pg | |-----------------------------------|---|-------------| | 20. Hallmarks continued | Limitless replicative potential Development of sustained angiogenesis Ability to invade and metastasize | Pg. 190-195 | | 21. New Hallmarks | Reprogramming Energy Metabolism Evasion of the Immune System Genomic instability Inflammation | Pg. 195-198 | | 22. Etiology of cancer | Chemical Radiological Microbial Oncogenic viruses H. Pylori | Pg. 198-204 | | 23. Tumor immunity | Tumor antigens Cell mediated immunity Immune surveillance & evasion | Pg. 204-207 | | 24. Clinical aspects of neoplasia | Systemic effects Grading & staging Lab diagnosis including molecular methods | Pg. 207-213 |