Hallmarks of Cancer

Original Hallmarks

Fundamental changes in cellular physiology compared to non-cancerous cells

Based in a large part on the SMT although some stromal interaction for angiogenesis

New Hallmarks

A better understanding that there is a two way conversation between the tumor parenchymal cells and the surrounding stroma

Hanahan D, Weinberg RA: The hallmarks of cancer: the next generation. Cell 144:646, 2011.

Hallmarks of Cancer Growth

Cell signalling

- 1. Growth factor binding
- Transient activation of the growth factor receptor
- 3. Signal transduction
- 4. Transcription regulation
- 5. Cell cycle entry & progression

Autocrine signalling

Target sites on same cell

- Extracellular signal
- Y Receptor

Paracrine signalling

Growth factors

Typically paracrine
Subverted by abnormal
stromal interaction

Autocrine = +ve feedback loop

e.g. Glioblastoma - PDGF Sarcomas - TGFα

Receptors

Receptor mutations leading to constitutive activation

e.g. EGFR mutations in colon/lung cancer

Receptor over-expression

e.g. EGFR Lung SCC HER2/NEU breast

e.g. EGF PDGF

Signal transducers

RAS

Small G protein

Most commonly mutated proto-oncogene in human tumors

Point mutations within the GTP-binding pocket or in the enzymatic region essential for GTP hydrolysis.

Kinase

BCR

BCR-ABL &BCR

<-CAP→

N-terminal "cap"

CAT

INACTIVE C-ABL

Active Site

Abl(1a)

Abl(1b)

SH3

SH₂

Signal transducers

ABL

Non-receptor associated tyrosine kinase (TK)

Internal ABL regulatory mechanism disrupted

Constitutive TK activity

Downstream RAS pathway activation

Oncogene addiction

Imatinib (Gleevec)

a Direct target Protein X Protein Y Protein X Protein X Protein X

Transcription factors

MYC

Activate/repress transcription

+CDK

-CDKI

t(8;14) *MYC* in Burkitt lymphoma

Amplification in breast, colon, & lung cancers

NMYC neuroblastoma
LMYC small cell lung
cancer

Cyclins & CDKs

Quiescent cells G₀ induced to enter the cell cycle by GF & ECM integrin signalling

Cyclin+CDK=active CDK

Regulation by CDKI

Checkpoints:

- G₁-S
- G₂-M
- Metaphase

Cyclins & CDKs

Cyclin D over-expression:
breast
esophagus
liver
lymphomas
plasma cell tumors

CDK4 amplification: melanomas sarcomas glioblastomas

Cyclins & CDKs

CDKN2A germline mutations: 25% of melanoma-prone kindreds

CDKN2A somatic
deletion/inactivation:
pancreatic carcinomas
glioblastomas
esophageal cancers
non–small cell lung
carcinomas
soft tissue sarcomas
bladder cancers

Hallmarks of Cancer Evading Growth Inhibition

RB: Governor of the Cell Cycle

First tumor suppressor gene to be discovered

Identified in retinoblastoma patients

Chromosome 13q14

Rare disease but mechanisms learned apply to a wide range of tumors

60% sporadic rest famillial AD

PATHOGENESIS OF RETINOBLASTOMA Mutation SPORADIC FORM Somatic cells Somatic cells of child Germ cells Retinal cells Retinoblastoma of parents FAMILIAL FORM Mutation Normal gene RB gene

RB: Governor of the Cell Cycle

Knudson "two-hit" hypothesis

Two defective copies needed

Familial: -inherited

-somatic

mutation

Sporadic: 2 somatic

mutations

RB: Governor of the Cell Cycle

G1-S transition

Cyclin E expression control:

- E2F sequestration
- Chromatin remodelling

Rb phosphorylation control:

- Cyclin D/CDK4,6
- Phosphatases

RB mutation mimicking

Activation of CDK4 *(mutation)*

Over-expression of cyclin D (translocation/ amplification)

Inactivation of CDKI (e.g. CDKN2A) (mutation/deletion/epigenetics)

Oncogenic viruses (e.g. HPV E7 protein binds to Rb preventing E2F binding)