

Li-Fraumeni syndrome

Tumor suppressor:

- Cell cycle arrest temporary-quiescence permanent-senescence
- Induce apoptosis

p53 senses:

- Anoxia
- Abnormal oncoprotein activity (e.g. MYC/RAS)
- DNA damage

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA
 - ↓ Bcl-2
 - ↓ Cyclins
- MDM2 (after repair)

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA
 - ↓ Bcl-2
 - ↓ Cyclins
- MDM2 (after repair)

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA
 - J Bcl-2
 - ↓ Cyclins
- MDM2 (after repair)

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA
 - ↓ Bcl-2
 - ↓ Cyclins
- MDM2 (after repair)

Summary

TGFβ pathway signalling

Potent inhibitor of proliferation

Type II receptor mutations:

- Colon
- Stomach
- Endometrium

SMAD4 mutations:

- Pancreas

Immune evasion, Angiogenesis, EMT

Contact Inhibition, NF2, and APC

Not fully understood

E-Cadherin homodimeric interaction

Contact Inhibition, NF2, and APC

Neurofibromin-2 (merlin)

NF2 homozygous loss = neurofibromatosis type 2:

noncancerous tumors in the nervous system (e.g. acoustic neuromas)

Contact Inhibition, NF2, and APC

adenomatous polyposis coli

β-catenin targets:

- growth-promoting genesCyclin D1MYC
- Transcriptional regulatorsTWISTSLUG/SNAIL
- \downarrow E-cadherin expression \rightarrow
- ↓ Contact inhibition

Role in **EMT**

EMT

Loss of apical-basolateral cell polarity

Actin reorganization

Upregulation of metalloproteases Increased deposition of extracellular matrix proteins

Migration and invasion

Hallmarks of Cancer Evasion of Cell Death

Mitochondrial (intrinsic)

Mitochondrial permeability is key

controlled > 20 proteins

Cytochrome c + cofactors, activates caspase-9

Anti-apototic proteins are inhibited

Bcl-2 & Bcl-x_L levels are reduced

Responsible for apoptosis in most situations

DNA damage

p53 accumulation

G1 arrest

p53 absence/mutation in certain cancers

Death receptor (extrinsic)

TNF receptor family

Responsible for apoptosis of self-reactive lymphocytes and target cells of some cytotoxic T lymphocytes

Fas or FasL mutations result in autoimmune diseases

Caspase-8 may cleave and activate Bid a "BH3 sensor" activating the mitochondrial pathway

Some viruses produce homologues of FLIP

Apoptosis abnormalities

Bcl-2 over-expression:

- Follicular B cell lymphoma (85%)
- t(14;18)
- Indolent growth

Reduced CD95 levels

FLIP over-expression

IAP over-expression

Greek: auto, self; phagy, eating

- Survival mechanism/nutrient deprivation
- Organelle turnover
- Has a role in cancer (anti or pro depending on internal/external factors)

- Regulatory overlap with apoptosis
- BH3 sensor Beclin-1 can induce apoptosis or autophagy

