Acids and Bases Dr. Diala Abu-Hassan, DDS, PhD Dr.abuhassand@gmail.com Lecture 1 MD summer Dr. Diala Abu-Hassan # Required material and further reading Required: Handout Text books: Biochemistry. Campbell Chapter 2 Fundamentals of General, Organic, and Biological Chemistry. McMurry. Chapter 10 softcopy will be sent Dr. Diala Abu-Hassan # Outline - Introduction- The Science of Biochemistry - Definitions of acids and bases - Acid and base strength - The dissociation constant - Conjugate pair strength - Water dissociation Dr. Diala Abu-Hassan Biochemistry is the science concerned with studying the various molecules that occur in living cells and organisms and # Why Biochemistry is important to Human Biology? - 1. Biochemistry is an intrinsically beautiful and fascinating body of knowledge. "Lubert Stryer" Because it unravels the details of the most fundamental processes in biological systems. - 2. Biochemistry massively influences medicine and treatment development, ex. sickle-cell anemia, cystic fibrosis, hemophilia, etc. - 3. By advances in biochemistry, researchers can tackle many questions in biology and medicine, ex. Biochemical changes in diseases, causes of diseases, lab tests..etc. # Benefits of studying biological systems at the molecular and biochemical level When we unravel the molecular and biochemical details of biological molecules: - 1. Molecular and biochemical basis of diseases become clear. - 2. Manipulate the biochemical processes and simulating them in vivo and in vitro. - 3. Molecules of life can be prepared on the bench ### What makes biomolecules special? | Functional Groups | of Biochemical Importance | | | | |-------------------------------|--|---------------------------------------|---------------------------------|---| | Class of
Compound | General
Structure | Characteristic
Functional Group | Name of
Functional Group | Example | | Alkenes | $RCH = CH_2$
RCH = CHR
$R_2C = CHR$
$R_2C = CR_2$ | с=с | Double bond | CH _z =CH _z | | Alcohols | ROH | —он | Hydroxyl group | СН,СН,ОН | | Ethers
Amines | ROR
RNH ₂
R ₂ NH | -0- | Ether group | CH ₅ OCH ₅ | | Thiols | R ₃ N
RSH | −n′
−sh | Amino group
Sulfhydryl group | CH ₃ NH ₂
CH ₃ SH | | Aldehydes | R—C—H | | Carbonyl group | СН,СН
О | | Ketones | R—G—R | _c_ | Carbonyl group | CH,C CH, | | Carboxylic
acids | R—С—ОН | —с—он | Carboxyl group | CH,C OH | | Esters | R—C—OR | —C—OR | Ester group | O
H
CH ₂ C OCH, | | Amides | R—G—NR ₂ | _C_N< | Amide group | ∏
CH₃C N(CH₃)₂ | | | R—C—NHR | | | | | | R—C—NH ₂ | 0 | | 0 | | Phosphoric acid
esters | R—O—P—OH

OH | _о_р_он
Он | Phosphoric ester
group | СН ₃ — О — Р — ОН
ОН | | Phosphoric acid
anhydrides | O O O P—OH OH OH | O O O O O O O O O O O O O O O O O O O | Phosphoric
anhydride group | O O O HO—P—OH | -The cellular apparatus of living organisms is made up of carbon compounds. #### Different Definitions of Acids and Bases - Arrhenius - Bronsted-Lowry - Lewis # Arrhenius Definition of Acids and Bases and Their Reactions Arrhenius Acids and Bases Acids are - Acids in H₂O are H⁺ donors - Bases in H₂O are OH⁻ donors Neutralization of acids and bases produces salt and water. NaOH $$\xrightarrow{H_2O}$$ Na⁺ + OH⁻ HCL $\xrightarrow{H_2O}$ Cl⁻ + H⁺ H⁺ + H- Ö: \longrightarrow H₃O⁺ H Arrhenius 1903 Nobel Prize #### Drawbacks: - 1. Reactions has to happen in aqueous solutions - 2. H₃O⁺ is released but not H⁺ # Bronsted-Lowry Definition of Acids and Bases and Their Reactions Bronsted-Lowry Acids and Bases (1923) - Acids donate H⁺ - Bases accept H⁺ (non-bonding pairs) # Lewis Definition of Acids and Bases and Their Reactions - Acids accept electrons - Bases donate electrons (non-bonding pairs) $$BF_3 + :NH_3 \longrightarrow F_3B^{\dots}:NH_3$$ Acid base ### **Common Acids** - HCI- hydrochloric- stomach acid - H₂SO₄- sulfuric acid car batteries - HNO₃ nitric acid explosives - HC₂H₃O₂- acetic acid vinegar - H₂CO₃-carbonic acid sodas - H₃PO₄- phosphoric acid -flavorings # **Common Bases** - NaOH- sodium hydroxide (LYE) soaps, drain cleaner - Mg (OH)₂ magnesium hydroxide-antacids - Al(OH)₃-aluminum hydroxide-antacids, deodorants - NH₄OH-ammonium hydroxide- "ammonia" Dr. Diala Abu-Hassan #### Water as both an acid and a base $$CH_3COO^- + H_2O \longrightarrow CH_3COOH + OH-$$ base acid base $H_2O + HCI \longrightarrow H_3O^+ + CI-$ base acid base $HA + H_2O \longrightarrow H_3O^+ + A^-$ (strong acid) (weak base) $HA + H_2O \longrightarrow H_3O^+ + A^-$ (strong base) Strong acid + strong base \longrightarrow weak base + weak acid # <u>Amphoterism</u> - an ion or molecule can act as an acid or base depending upon the reaction conditions Water in NH₃ serves as an acid $$H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^-$$ acid base base Water in acetic acid serves as a base # Measuring concentrations Molarity: the number of moles in a liter of solution Unit: Mole/Liter = M $mM = 10^{-3} M$, $uM = 10^{-6} M$ Symbol: [X] Concentration = Amount of solute Amount of solvent Dissolve 2 moles of glucose in 5 liters of H₂0. what is the concentration? [Glucose] = 2/5 = 0.4 M # Acid and Base Strength - Some acids can cause burns if come in contact with skin, other acids are safe. why? - How easy can the acid produce proton - Strong acid: gives up H+ easily (100% dissociated in water) $$HCI \longrightarrow H^+ + CI^-$$ Weak acid: gives up H⁺ with difficulty (less than 100% dissociated) # Acid dissociation constant, K_a – The general ionization of an acid is as follows: $$HA + H_2O \longleftrightarrow H_3O^+ + A^-$$ So the acid dissociation constant is as follows: $$K_a = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$ $[H_2O] = 55.5$ M and is constant in all equations $$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$ #### **Acid dissociation constant** – The general ionization of an acid is as follows: $$HA \longleftrightarrow H^+ + A^-$$ So the acid dissociation constant is as follows: $$K_a = \frac{[H^+][A^-]}{[HA]}$$ There are many orders of magnitude spanned by K_a values, so pK_a is used instead: $$pK_a = log 1/K_a = -log_{10} K_a$$ The larger the value of the pK_a, the smaller the extent of dissociation. ### The equilibrium constant, Ka $$K_a = \frac{[H^+][A^-]}{[HA]}$$ Larger K_a means: More dissociation Smaller pK_a Stronger acid | TABLE 8-2 | Acidit | y Constants in W | /ater at 25°C | 3 | |------------------|--|---|----------------------|-----------------| | Acid | Formula | Conjugate Base | K _a | pK _a | | Hydriodic | НІ | I- | $\approx 10^{11}$ | ≈ -11 | | Hydrobromic | HBr | Br^{-} | $\approx 10^9$ | ≈ -9 | | Perchloric | HClO ₄ | ClO ₄ | $\approx 10^7$ | ≈ -7 | | Hydrochloric | HC1 | Cl ⁻ | $\approx 10^7$ | ≈ -7 | | Chloric | HClO ₃ | ClO ₃ | $\approx 10^3$ | ≈ -3 | | Sulfuric (1) | H ₂ SO ₄ | HSO_4^- | $\approx 10^2$ | ≈ -2 | | Nitric | HNO ₃ | NO_3^- | ≈ 20 | ≈ -1.3 | | Hydronium ion | H_3O^+ | H_2O | 1 | 0.0 | | Urea acidium ion | (NH ₂)CONH ₃ ⁺ | (NH ₂) ₂ CO (urea) | 6.6×10^{-1} | 0.18 | | Iodic | HIO ₃ | IO_3^- | 1.6×10^{-1} | 0.80 | | Oxalic (1) | $H_2C_2O_4$ | $HC_2O_4^-$ | 5.9×10^{-2} | 1.23 | | Sulfurous (1) | H_2SO_3 | HSO_3^- | 1.5×10^{-2} | 1.82 | | Sulfuric (2) | HSO ₄ | SO_4^{2-} | 1.2×10^{-2} | 1.92 | | Chlorous | HClO ₂ | ClO_2^- | 1.1×10^{-2} | 1.96 | | Phosphoric (1) | H_3PO_4 | $H_2PO_4^-$ | 7.5×10^{-3} | 2.12 | | Arsenic (1) | H ₃ AsO ₄ | $H_2AsO_4^-$ | 5.0×10^{-3} | 2.30 | | Chloroacetic | CICH ₂ COOH | CICH ₂ COO ⁻ | 1.4×10^{-3} | 2.85 | | Hydrofluoric | HF | F^- | 6.6×10^{-4} | 3.18 | | Nitrous | HNO ₂ | NO_2^- | 4.6×10^{-4} | 3.34 | | Formic | НСООН | HCOO ⁻ | 1.8×10^{-4} | 3.74 | ^{© 2003} Thomson - Brooks/Cole #### Acid dissociation constant Acid Dissociation Constants and pK_a Values for Some Weak Electrolytes (at 25°C) | Acid | $K_a(M)$ | pK_a | |---|------------------------|--------| | HCOOH (formic acid) | 1.78×10^{-4} | 3.75 | | CH ₃ COOH (acetic acid) | 1.74×10^{-5} | 4.76 | | CH ₃ CH ₂ COOH (propionic acid) | 1.35×10^{-5} | 4.87 | | CH₃CHOHCOOH (lactic acid) | 1.38×10^{-4} | 3.86 | | $HOOCCH_2CH_2COOH$ (succinic acid) pK_1^* | 6.16×10^{-5} | 4.21 | | HOOCCH ₂ CH ₂ COO ⁻ (succinic acid) pK ₂ | 2.34×10^{-6} | 5.63 | | H_3PO_4 (phosphoric acid) pK_1 | 7.08×10^{-3} | 2.15 | | $H_2PO_4^-$ (phosphoric acid) p K_2 | 6.31×10^{-8} | 7.20 | | HPO_4^{2-} (phosphoric acid) p K_3 | 3.98×10^{-13} | 12.40 | | $C_3N_2H_5^+$ (imidazole) | 1.02×10^{-7} | 6.99 | | $C_6O_2N_3H_{11}^+$ (histidine–imidazole group) pK_R^\dagger | 9.12×10^{-7} | 6.04 | | H_2CO_3 (carbonic acid) pK_1 | 1.70×10^{-4} | 3.77 | | HCO_3^- (bicarbonate) p K_2 | 5.75×10^{-11} | 10.24 | | (HOCH ₂) ₃ CNH ₃ ⁺ (tris-hydroxymethyl aminomethane) | 8.32×10^{-9} | 8.07 | | NH ₄ ⁺ (ammonium) | 5.62×10^{-10} | 9.25 | | CH ₃ NH ₃ ⁺ (methylammonium) | 2.46×10^{-11} | 10.62 | ^{*}These pK values listed as pK_1 , pK_2 , or pK_3 are in actuality pK_a values for the respective dissociations. This simplification in notation is used throughout this book. Data from CRC Handbook of Biochemistry, The Chemical Rubber Co., 1968. $^{{}^{\}dagger}pK_R$ refers to the imidazole ionization of histidine. #### Base dissociation constant $$B + H_2O \iff BH^+ + OH^-$$ $$K_b = \frac{[BH+][OH^-]}{[B]}$$ Reverse the reaction: $$K_a = \frac{[B][H^+]}{[BH^+]}$$ # Weak Bases | | | Conjugate | $K_{ m b}$ | | |-------------|---------------------------------|--|-----------------------|--| | Name | Formula | Acid | | | | Ammonia | NH ₃ | NH ₄ ⁺ | 1.8×10^{-5} | | | Methylamine | CH ₃ NH ₂ | CH ₃ NH ₃ ⁺ | 4.38×10^{-4} | | | Ethylamine | $C_2H_5NH_2$ | $C_2H_5NH_3^+$ | 5.6×10^{-4} | | | Aniline | $C_6H_5NH_2$ | $C_6H_5NH_3^+$ | 3.8×10^{-10} | | | Pyridine | C_5H_5N | $C_5H_5NH^+$ | 1.7×10^{-9} | | ### Strong Acids - Dissociate readily - Ka is very large - Examples: Hydrochloric, Nitric; Sulfuric Ex. $$HCI \rightarrow H^+ + CI^-$$ $$Ka = [H^+][Cl^-]$$ [HCl] $$[H^+] = [acid]$$ Ex.1 M solution of HCl has a [H+] of 1 M 1 mM HCl solution has a [H+] of 1 mM 0.1 M H₂SO₄ solution has a [H+] of 0.2 M #### **Weak Acids** - Dissociate slightly - Ka is smaller than strong acids - Examples: Acetic, Boric, Nitrous, Phosphoric, Sulfurous Ex. $$CH_3COOH + H_2O \longleftrightarrow CH_3COO^- + H_3O^+$$ $$Ka = [H+] [CH3COO-]$$ [CH₃COOH] What is the H+ of a 0.1 M solution of acetic acid? Ka= 1.74 X 10⁻⁵ $$1.74 \times 10^{-5} = x^2/0.1$$ $$x^2 = 1.74 \times 10^{-6}$$, or $x = 1.32 \times 10^{-3} M$ # Conjugate pair strength $$HA + H_2O \longrightarrow H_3O^+ + A^-$$ $$HA + H_2O \longrightarrow H_3O^+ + A^-$$ $$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$$ Weak acid weak base strong base strong acid $$CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$$ Stronger acid strong base weak base weak acid ### Equilibrium constant and the pH of water H₂O dissociates to a slight extent to form hydrogen (H⁺) and hydroxyl (OH⁻) ions. $$H_2O \rightleftharpoons H^+ + OH^ K_{eq} = \frac{[H^+][OH^-]}{[H_2O]}$$ $K_{eq} = \frac{(10^{-7})(10^{-7})}{55.5} = 1.8 \times 10^{-16}$ Because the concentration of H_2O in pure water is essentially constant, a new constant, K_w , the ion product of water, can be written as $$K_{\rm w} = 55.5 \ K_{\rm eq} = 10^{-14} = [{\rm H}^+][{\rm OH}^-]$$ [H+] of pure water is only 0.0000001 M #### Dissociation of water • $K_w = [H^+][OH^-] = 10^{-14}$ Example: A solution has an [OH-] = 10-9 M $$[H_3O^+] = 10^{-5} M$$ # Problem solving #### Example: What is the [H⁺] of a 0.01 M NaOH solution? $$Kw = [H^+] \times [OH^-] = [H^+] \times 10^{-2} = 10^{-14}$$ $$[H^+] = 10^{-12} M$$ #### Example: What is the [OH-] of a 0.01 M HCl solution? $$Kw = [H^+] \times [OH^-] = 10^{-2} \times [OH^-] = 10^{-14}$$ $$[OH^{-}] = 10^{-12} M$$ #### Example: Find the K_a of a 0.04 M weak acid HA whose [H⁺] is 1 x 10⁻⁴? $$HA \longrightarrow H^+ + A^-$$ $$K_a = [A^-][H^+]/[HA] = [H^+]^2/[HA] = 10^{-4} \times 10^{-4}/0.04 = 2.5 \times 10^{-7}$$ #### Example 2: What is the $[H^+]$ of a 0.05 M Ba $(OH)_2$? $$Ba(OH)_2 \longrightarrow Ba + 2OH^-$$ $$[OH^{-}] = 2x \ 0.05 = 0.10 \ M = 1 \ x \ 10^{-1}$$ $$[H^+] = 1x \ 10^{-13}$$ #### Example 4: The [H⁺] of a 0.03 M weak base solution is 1 x 10⁻¹⁰ M. Calculate pKb? $$B + H_2O \longrightarrow BH^+ + OH^-$$ $$[OH^{-}] = 10^{-4}$$ $$K_b = (10^{-4} \times 10^{-4}) / 0.03 = 3.33 \times 10^{-7} M$$ $$pK_b = -log K_b = 6.48$$