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The human body produces and removes

1011 platelets daily to maintain a normal

steady state platelet count. Platelet pro-

duction must be regulated to avoid spon-

taneousbleedingor arterial occlusionand

organ damage. Multifaceted and complex

mechanisms control platelet production

and removal in physiological and patho-

logical conditions. This review will focus

on different mechanisms of platelet se-

nescence and clearance with specific

emphasis on the role of posttranslational

modifications. It will also briefly address

platelet transfusion and the role of gly-

cans in the clearance of stored platelets.

(Blood. 2015;126(16):1877-1884)

Introduction

Although the primary function of platelets is hemostasis, platelets also
participate in antimicrobial host defense, secrete cytokines that can in-
duce inflammation, and growth factors that aid tissue repair. Chronic
inflammation is often associated with reactive high platelet counts, and
responses to acute infectionsmay be accompanied by sudden reduction
or increase of platelets (thrombocytopenia or thrombocytosis, respec-
tively), placing platelets as reporters of disease progression or healing.
A steady platelet supply is ensured by a continuous platelet clearance
and production of 1011 platelets daily to maintain levels of 150 000 to
400 000 platelets per microliter of blood. Platelet clearance and pro-
duction must therefore be regulated to avoid spontaneous bleeding or
arterial occlusion and organ damage; however, both processes remain
poorly understood. This review will focus on the current knowledge of
platelet clearance and briefly address mechanisms of production.

Thrombopoiesis

A major milestone in understanding the molecular mechanisms of
thrombopoiesis was the discovery of thrombopoietin (TPO), the pri-
mary regulator of thrombopoiesis, in 1994.1 TPO is the primary reg-
ulator of platelet production, supporting the survival, proliferation, and
differentiation of the platelet precursors, the bone marrow (BM)mega-
karyocytes (MKs).2-4 Since the discovery of TPO, many molecular
mechanisms of thrombopoiesis have been identified, including the de-
velopment of polyploidy and proplatelet formation, the final fragmen-
tation of the MK cytoplasm to yield blood platelets, and the regulation
of this process.3,5-8

Platelet production is a complex process that requires differentiation
of hematopoietic stem cells (HSCs) into specialized progenitors, and
their organized interplay with the BM microenvironment and hema-
topoietic cytokines (Figure 1). Data support the existence of two ana-
tomical and functional marrow microenvironmental “niches”: the
osteoblastic niche and thevascular niche.9,10MKmaturationandplatelet
formation are dependent on cellular migration from the osteoblastic to
the vascular niche, where once adequatelymature,MKs extend pseudo-
podial projections, termed proplatelets, through or between cells of the
sinusoidal endothelial layer and shed platelets into the bloodstream.11

Marrow stromal cells are an integral part of these local microen-
vironments through expression of soluble and surface-bound cyto-
kines, counter-receptors for integrins and other adhesionmolecules
on the surface of hematopoietic cells, and the secretion of extra-
cellular macromolecules.12

In reference to MK development, BM stromal cells have been
shown to secrete TPO and CXCL12 (also called stromal cell-derived
factor 1), a primary chemokine that attracts MKs and other hemato-
poietic cells to the marrow microenvironment.13,14 Additionally,
CXCL12 acts to stimulate MKs to express cell surface stem cell
factor,15 which synergistically with TPO promotes MK growth,16 and
to express vascular cell adhesion molecule-1 and fibronectin, which
promote cell growth through their binding to the MK integrin
a4b1.17,18 In addition to its effects on MK progenitors and mature
cells, TPO affects HSCs, especially when used in combination with
interleukin (IL)-3 or stem cell factor.19,20 HSCs express the TPO recep-
tor, Mpl, on their surface, indicating that the stem cell effects of TPO
are direct.21,22

The interaction of microenvironmental von Willebrand factor
(VWF) and itsMK receptor glycoprotein (GP) Ib-IX appears important
for platelet formation and release, whereas in contrast, type I collagen,
which localizes to the osteoblastic niche, prevents platelet formation.23

Recent studies point to the fact that glycans are key elements in
hematopoiesis regulating HSC function and MK migration, specifi-
cally type 2 lactosaminoglycan (ie, LacNAc) synthesis by the
b1,4-galactosyltransferase 1 (S.G. and K.M.H., unpublished data).
Althoughmuch progress has beenmade toward the understanding of
thrombopoiesis, multiple unanswered questions remain.

TPO regulation

One unanswered question is the regulation of TPO production under
steady state and under pathological conditions.Multiple organs display
TPO RNA transcripts, with hepatocytes having the highest levels and
being the primary cells responsible for the production and secretion of
TPO into the bloodstream (Figure 2). TPO production has long been
thought to be constitutive, with TPO serum levels maintained solely by
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its uptake and metabolism by platelets andMKs.24-28 Circulating TPO
levels are elevated in patients with congenital amegakaryocytic throm-
bocytopenia, caused bygermlineMplmutations,29,30 thrombocytopenia-
absent radius syndrome,31or acquiredaplastic anemia.32,33 In thesecases,
circulating TPO levels are inversely correlated to platelet counts. Thus,
the removal and destruction of TPO released into the bloodstream de-
pends on the platelet and MK mass, and on expression of Mpl on the
platelet and MK surface (Figure 2).

Support for this model also comes from mice generated to
specifically lack in MKs and platelets Mpl or Mpl-regulatory pro-
teins, ie, the Mpl-associated tyrosine kinase Janus kinase (JAK)2
and the large GTPase dynamin 2 (DNM2), which plays a critical
role in MK demarcation membrane system formation and receptor-
mediated endocytosis (eg, Mpl).6,34,35 Mplfl/fl Pf4-Cre mice and
Jak2fl/fl Pf4-Cre mice displayed profound megakaryocytosis and
thrombocytosis with a remarkable expansion of MK-committed
and multipotential progenitor cells, the latter displaying biological
responses and a gene expression signature indicative of chronic
TPO overstimulation as the underlying causative mechanism.34,35

This is an intriguing finding as Mplfl/fl Pf4-Cre mice and Jak2fl/fl

Pf4-Cremice were obviously able to “bypass” the lack of Mpl and
JAK2 in theMK lineage, respectively. These mice expressMpl and
JAK2 normally in stem/progenitor cells. The studies conclude that
TPO signaling in MKs is dispensable for platelet production, and
that the key role of TPO signaling is in controlling platelet numbers
via generation and stimulation of the bipotential MK precursors.
On the other hand, Mpl expression inMKs and platelets is essential
to prevent megakaryocytosis and myeloproliferation by restricting
the amount of TPO available to stimulate the production of MKs
from the progenitor cell pool. Even more surprising was the normal
circulating TPO levels in these mice, presentingmore evidence that
circulating TPO levels are regulated in a complicated manner.
Dnm2fl/fl Pf4-Cre mice have impaired Mpl-mediated endocytosis,
resulting in elevated plasma TPO levels and constitutive phos-
phorylation of JAK2, although JAK2 expression is reduced in
platelets lacking DNM2.6Dnm2fl/fl Pf4-Cremice develop MK hyper-
plasia, myelofibrosis, extramedullary hematopoiesis, and severe
splenomegaly. However, Dnm2fl/fl Pf4-Cre mice develop macro-
thrombocytopenia, not thrombocytosis, as DNM2-dependent receptor-
mediated endocytosis plays an additional critical role in the formation
of the MK demarcation membrane system required for platelet
formation. The low blood platelet numbers ofDnm2fl/fl Pf4-Cremice

and their inability to clear circulating TPO due to impaired Mpl-
mediated endocytosis likely exacerbate their rapid and severe
myelofibrosis.

A growing body of evidence lends credence to the assertion that
platelet TPOmetabolism is not the sole determinant of plasma TPO
levels in humans. In contrast to the “autoregulation”model of blood
TPO levels, serum TPO levels are lower than expected in patients
with immune thrombocytopenia (ITP)36,37 and high in patients
with essential thrombocythemia.38,39 In patients with thrombocy-
topenia, little of the hepatocyte-produced TPO is presumed to be
removed by platelets and TPO blood levels rise. In contrast, throm-
bocytosis should be accompanied by low steady state levels of
blood TPO, because platelet-mediated TPO destruction surpasses
its production.24-28 However, Mpl expression levels on the mem-
brane surface of platelets are strongly decreased in patients with
essential thrombocythemia presenting the somatic JAK2 mutation
V617F,40,41 which can explain the decreased TPO uptake and high
circulation TPO levels.

The notion that TPO production is regulated, rather than auton-
omous, is further supported by data showing that marrow stromal
cells produce TPO in response to thrombocytopenia in both mice
and humans.1,42 Selective liver irradiation in mice stimulates
hepatic TPO production.43 Further, a number of inflammatory
states (eg, ulcerative colitis, rheumatoid arthritis, and ovarian
cancer) are associated with increased blood TPO levels and
thrombocytosis.1,38,44-51 This inflammation-induced increase in
TPO expression is mediated by IL-6, which stimulates hepatic TPO
messenger RNA (mRNA) expression and production both in
hepatocytes in vivo and in hepatoma HepG2 and Hep3B cells in
vitro.49,50,52,53 If hepatic TPO regulation by IL-6 is now well char-
acterized, the ligand-receptor pair regulating hepatic TPO pro-
duction at steady state has remained elusive. A new model detailed
below furthers our understanding of the regulation of blood TPO
levels and thrombopoiesis: desialylated, senescent platelet clear-
ance via the hepatic Ashwell-Morrell receptor (AMR) enhances
hepatic TPO production (Figure 2).

In summary, circulating TPO levels are regulated in a complicated
manner by platelet andMKMpl-mediated endocytosis and destruction,
and hepatic TPO production, regulated by IL-6 and desialylated,
senescent platelets. Further studies are required todetermine the relative
contribution of these regulatory mechanisms under physiological and
pathological conditions.

Figure 1. Megakaryopoiesis and thrombopoiesis.

HSCs reside in the BM osteoblastic niche and differentiate

into MK progenitors and finally into mature polyploidy MKs.

This process, called megakaryopoiesis, includes endomi-

totic cell cycles, leading to polyploidy and markedly

enlarged cell size. TPO is the primary regulator of mega-

karyopoiesis, inducing differentiation and maturation of

MKs. In the osteoblastic niche, collagen I inhibits platelet

production through interaction with the MK integrin a2b1.

Platelet production is dependent on MKs migration toward

the vascular niche, where they interact with sinusoidal en-

dothelial cells, produce long-branching transendothelial ex-

tensions called proplatelets, and release platelets into the

circulation. Migration and localization of MKs in proximity

to the BM sinusoids is regulated by several factors, among

which the chemokine CXCL12 and its receptor CXCR4

that increase mobility of MK progenitors, facilitating their

interaction with sinusoidal endothelial cells mediated by

endothelial cell vascular cell adhesion molecule-1 and MK

integrin a4b1.
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Platelet clearance

Several mechanisms mediate platelet clearance. One mechanism ap-
pears to function via aging (senescence) induced signals, ie, via glycan
degradation and apoptotic mechanisms. Platelets are also removed by
immune (antibody mediated) responses.

Senescence-induced platelet clearance by
the AMR

Studies have shown that platelet surface glycans mediate platelet
clearance.54,55 Recently, loss of sialic acid has been identified as a
determinant for the removal of senescent circulating platelets.56 Sialic
acid loss is likely mediated by upregulation of platelet sialidases, ie,
Neu1 andNeu3, expressed ingranular compartments andon the plasma
membrane, respectively.57 Platelet Neu1 and Neu3 have a preference
for the sialic acid linkage found on glycans of the VWF receptor com-
plex GPIba subunit, exposing underlying galactose residues and prim-
ing GPIba for metalloproteinase-mediated degradation during storage.
Interestingly, platelet incubation with the sialidase inhibitor, 2-deoxy-
2,3-dehydro-N-acetylneuraminic acid, enhances the recovery and sur-
vival of platelets stored at 4°C in mice.57 The sialidase inhibitor
oseltamivir phosphate (Tamiflu), which is clinically used to treat in-
fluenza, has also been shown to increase platelet counts in 2 patients
with ITP, as well as in 77 patients from the Erasmus Medical Center,
Rotterdam, independently of influenza diagnosis.58-60 Clinical studies
are required to determine whether preventing platelet desialylation by
inhibition of platelet Neu1 and Neu3 with 2-deoxy-2,3-dehydro-N-
acetylneuraminic acid and/or oseltamivir phosphate treatment improves
platelet recovery and survival in transfusion settings.

St3gal42/2 mice lacking the a2,3-sialyltransferase IV (ST3GalIV)
develop thrombocytopenia due to increased platelet clearance.61,62

Desialylated platelets, either senescent, treated with neuraminidase, or
isolated from St3gal42/2 mice, are cleared by the hepatic AMR, a
transmembrane heteroligomeric GP complex composed of two
ASGPR1 (CLEC4H1, hepatic lectin 1) and one ASGPR2 (CLEC4H2,
hepatic lectin 2) subunits. The hepatocyte AMR, originally termed the
hepatic asialo-GP receptor, was the first cellular receptor to be identified
and isolated, and the first lectin to be detected in mammals. It is one of
the multiple lectins of the C-type family involved in recognition, bind-
ing, and clearance of asialo-GPs. This highly conserved receptor has
been largely regarded as an endocytic receptor, and since its discovery
4 decades ago, the regulatory role of the hepatic AMR has remained

largely unclear.63 Specifically, mice lacking either ASGPR1 or
ASGPR2 do not accumulate plasma proteins or lipids lacking sialic
acid, which has been the predicted outcome of eliminating one of the
AMRsubunits. It has thereforebeena surprisingdiscovery that platelets
with reduced a2,3-linked sialic acid during sepsis, after cold storage
(in vitro aging), or inmice lackingST3GalIV, are cleared by the hepatic
endocytic AMR.61,62,64,65

These findings subsequently led to the discovery that removal of
senescent, sialic acid deprived platelets drives hepatic TPO mRNA
expression in vivo and in vitro via JAK2 and signal transducer and
activator of transcription (STAT)3 to increase MK numbers and de
novo platelet production.56 The notion that the loss of sialic acid de-
termines platelet lifespan is not novel,61,62,64,66-68 however, the recent
study elucidates that aged, desialylated platelets regulate hepatic TPO
mRNA production in vivo via the AMR. This feedback mechanism
presents the AMR-desialylated platelet pair as an important control
point for TPO homeostasis and shows that TPO expression in hepa-
tocytes is regulated and not constitutive (Figure 2).

The AMR–IL-6R connection

Interestingly, theAMRsignaling cascade shares similaritieswith that of
IL-6, as it involves JAK2 and STAT3 tyrosine phosphorylation, and
STAT3 translocation to the nucleus (Figure 3).56,69 Binding of IL-6 to
its hepatic receptor, IL-6R/gp80, engages the signal transducing subunit
gp130, leading to STAT3 tyrosine phosphorylation and activation
by gp130-associated JAK1, and to a lesser extent, JAK2. Thus, both
desialylated platelets and IL-6 lead to STAT3-mediated hepatic TPO
mRNA expression downstream of the AMR-JAK2 and IL-6R–JAK1
signaling cascades, respectively. Sequence analysis suggests that the
TPOpromoter region contains STAT3 binding sites. However, whether
these are functional has not yet been investigated.

Importantly, the disruption of AMR-desialylated platelet signaling
by the JAK1/2 inhibitors AZD1480, TG101348, and BMS911543 ad-
versely affects hepatic TPOmRNA expression and secretion in mouse
hepatocytes in vivo and in human HepG2 cells in vitro.56 Thrombocy-
topenia is a commonadverse event of JAK1/2 inhibitor treatment,which
is clinically used in myeloproliferative neoplasms.70,71 JAK1/2 inhib-
itors target hematopoietic stem and precursor cell mutant JAK2-V617F,
as well as wild-type JAK2, the activation of which is essential for red
blood cell and platelet production.72,73 This new study indicates that
inhibition of TPO production downstream of the hepatic AMR-JAK2
signaling cascade could additionally contribute to the thrombocy-
topenia associated with JAK1/2 treatment. Clinical studies are
necessary to investigate this notion, particularly to determine whether

Figure 2. Hepatic TPO production via JAK2-STAT3

signaling after desialylated platelet uptake by the

AMR. Desialylated, senile platelets are recognized by

the hepatic AMR to regulate hepatic TPO production,

BM homeostasis, and thrombopoiesis. BM MKs produce

and release young sialic acid (purple ring) containing

platelets into the blood stream. Young platelets max-

imally internalize TPO through Mpl receptors. Circulating

platelets become desialylated as they age by active

blood-borne sialidases (dashed purple ring), become

ligands for the AMR, and are ingested by hepatocytes.

Desialylated platelet ingestion signaling positively stim-

ulates hepatic TPO mRNA expression via activation of

JAK2-STAT3 and TPO release into plasma, thereby

regulating BM homeostasis and thrombopoiesis.

BLOOD, 15 OCTOBER 2015 x VOLUME 126, NUMBER 16 REGULATING BILLIONS OF BLOOD PLATELETS 1879

For personal use only.on September 30, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


myeloproliferative neoplasm patients treated with JAK1/2 inhibitors
have low circulating TPO levels.

Is there a crosstalk between the AMR and IL-6R? Whether JAK2
and STAT3 directly associate with the AMR or require gp130 remains
to be determined. A tyrosine kinase of 127 kDa (possibly JAK2)
constitutively associates with the AMR ASGPR1 subunit in HepG2
cells.74 It is therefore possible that both IL-6 and desialylated platelets
lead to STAT3-mediated hepatic TPOmRNA expression downstream
of JAK1 and JAK2. Hepatic STAT3 controls the transcription of
mRNA for acute phase plasma proteins.75 Because both the AMR and
IL-6R share signaling through STAT3, it is tempting to speculate that
acute phase proteins are produced in response to AMR ligation, which
would establish clearance of desialylated platelets as a component of
the acute phase response. Consistent with this hypothesis, the AMR-
mediated removal of desialylated platelets improves the probability of
host survival during sepsis.62,65 The AMR modulates VWF homeo-
stasis and is responsible for thrombocytopenia during systemic Strep-
tococcus pneumoniae infection by eliminating platelets desialylated by
the bacterium’s neuraminidase. It appears that hemostatic adaptation
by the AMR moderates the onset and severity of disseminated intra-
vascular coagulationduring sepsis, and improves the probability of host
survival. Separate studies have shown that liver regeneration following
injury is promoted byplatelets,76 and requiresAMRandhepatic STAT3
function.77,78 Thus, the platelet-AMR-STAT3 signaling cascade may
connect desialylated platelets to inflammatory responses.

Correcting platelet counts

Thrombocytopenia can arise from multiple factors including BM
disorders, antineoplastic chemotherapy, or HSC transplantation, and is
often prophylactically treated with platelet transfusion in the absence
of actual bleeding. Platelet collection is performed in multiple ways,
including platelet separation from individually donated whole blood or
through apheresis procedures. In 1999, over 9 million platelets trans-
fusions were performed.79 As with any therapy, platelet transfusions

canbe beneficial but are also accompaniedby adverse reactions, such as
fever, chills, rigor, and rarely life-threatening acute lung injury, which
occurs in ;0.3% of patients transfused with platelets.80,81 Allogenic
platelet transfusions frequently result in the development of major
histocompatibility complex-specific alloantibodies, which target plate-
lets in subsequent transfusions and induce a state of refractoriness.
Platelet refractoriness deprives the affected individual of the benefits
(increase in platelet counts) expected after platelet transfusion. The role
of the platelet ABO blood group system compatibility is also subject
to discussions. ABO-incompatible platelet transfusions are associ-
ated with lower platelet count increments when compared with
ABO-compatible platelet transfusions, which leads to decreased
intervals between transfusions.82

Platelet storage

In vitro storage (in vitro induced senescence) of platelets for transfusion
is also associated with changes in glycan composition.57 Specifically,
platelets lose sialic acid during platelet storage. It is therefore tempting
to speculate that transfusion of old, desialylated long-term stored
platelets, although poorly functional, may have the benefit to stimulate
hepatic TPO production.56 In support of this notion, Karpatkin et al
demonstrated that injection of platelets desialylated by neuraminidase
affected thrombopoiesis in rabbits.83 Early studies by Karpatkin et al
concluded that asialo platelets stimulateMKs to producemoreplatelets.
These studies suggested that the basal stimulus to thrombopoiesis might
be regulated by desialylated “older” platelets, presumably by stimulating
liver TPO secretion.

The cellular and molecular mechanism underlying the clearance of
cold-stored platelets unraveled several “non-canonical”platelet glycan-
lectin interactions. Cold-stored and room temperature platelets sequen-
tially lose sialic acid and galactose (K.M.H., unpublished data), a
process that leads to exposure of the underlying b-galactose and
N-acetylglucosamine (GlcNAc), respectively. Cooling platelets furthers
clustering of the platelet surface VWF receptor consisting of GPIba,
GPIbb, GPIX, and GPV subunits, a process that may increase the
density of N-linked glycans with terminal b-galacatose and bGlcNAc
onGPIba subunits. The cold storage induced an increase inb-galactose,
and bGlcNAc density increases clearance by the hepatic AMR and the
macrophage (Kupffer cell) aMb2 integrin (also known as complement
receptor 3, or macrophage-1 antigen, and CD11b), respectively
(Figure 4).64,84 Beta-galactosidase expression and activity increases on
platelet surfaces upon storage (K.M.H., unpublished data) presumably
mediating surfacegalactose residue cleavage. IntegrinaMisoneprotein
subunit that forms the heterodimeric integrin aMb2. The second chain
of aMb2 is the common integrin b2 subunit (CD18) and aMb2 is
expressed on the surface of many leukocytes involved in the innate
immune system. The aM domain contains a cation-dependent ligand
binding I-domain, which mediates inflammation by regulating
leukocyte adhesion and migration, and has been implicated in several
immune processes such as phagocytosis, cell-mediated cytotoxicity,
chemotaxis, and cellular activation. It is involved in the complement
systemdue to its capacity to bind inactivated complement component 3b
(iC3b) and the aMb2 integrin serves as a phagocytic receptor for the
iC3b fragment of complement.85-87 The aM domain also binds to
platelet GPIba. Inhibition studies with monoclonal antibodies or re-
ceptor ligands showed that the interaction involves the macrophage-1
antigen domain (homologous to the VWF A1 domain), and the GPIba
leucine-rich repeat and carboxyl-terminalflanking regions. These obser-
vations provide a molecular target for disrupting leukocyte-platelet

Figure 3. Comparison between the AMR and IL-6R signaling pathways leading

to TPO mRNA expression. Binding of desialylated platelets to the hepatic AMR

composed of one ASGPR2 and two ASGPR1 subunits activates JAK2. IL-6 binding

to its hepatic receptor composed of one gp80 and two gp130 subunits activates

gp130-associated JAK1, and to a lesser extent JAK2. Both JAK1 and JAK2 phos-

phorylate STAT3, resulting in its translocation to the nucleus where it stimulates

mRNA expression of TPO and acute phase response proteins. It is unclear whether

JAK2 directly associates with ASGPR1 and whether STAT3 directly binds to the

TPO promoter.
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complexes that promote vascular inflammation in thrombosis,
atherosclerosis.88

The aMdomain also contains a cation-independent lectin-site,86,89

which recognizes and binds GlcNAc on cold-stored platelets,84,90,91

and microbial surface polysaccharides and b-glucan.92 The
carbohydrate-binding integrin aM selectively recognizes GlcNAc on
clustered GPIba subunits of the VWF receptor following short-term
(hours) platelet cooling leading to phagocytosis and clearance of plate-
lets independently of iC3.84,90,91 Although galactosylation of platelet
GlcNAc residues with uridine 59-diphosphogalactose normalizes the
survival of short-term chilled isolated mouse platelets,93 the treatment
failed to prevent the clearance of transfused autologous apheresis
platelets stored for 48 hours at 4°C in a phase 1 feasibility study.94 In
agreementwith the humanplatelet study, uridine 59-diphosphogalactose
treatment of murine platelets stored for 48 hours at 4°C also did not
prevent their rapid clearance, showing that different mechanisms of
clearance exist for short- and long-term cold-stored platelets.94Without
subsequent sialylation, transfused galactosylated platelets are likely
cleared by the hepatic AMR. It is noteworthy that in vitro stored
platelets are cleared by receptors expressed in the liver (ie, the hepa-
tocyte AMR and the Kupffer cell aMb2 integrin), and not by the
spleen, independently of increase of apoptotic markers.

Apoptosis as a platelet clearance mechanism

Platelet survival also depends on the interplay between prosurvival and
proapoptotic members of the Bcl-2 family, which are critical regulators
of the intrinsic apoptotic pathway (Figure 4). Platelet survival is ex-
tended inmice lacking the proapoptotic proteins Bak andBax, whereas
platelet clearance is accelerated inmice lacking the prosurvival proteins
Bcl-2, Bcl-xL, and Mcl-1, and in mice treated with the BH3 mimetic
ABT-737 (inhibitor of prosurvival Bcl-2, Bcl-xL, and Bcl-w).95-97

Whether members of the Bcl-2 family alter platelet surface sialic acid
content or whether thesemechanisms converge at certain points during
platelet lifetime is unclear. Interestingly, the primary platelet clearance
site following administration of ABT-737 is the liver in dogs, presum-
ably via scavenger receptors,98 whereas the spleen does not appear
to regulate the platelet lifespan in mice.97 More data are needed to

establish if glycan degradation in vivo (ie, sialic acid loss), triggers the
intrinsic apoptotic machinery in platelets, linking glycan degradation
and intrinsic apoptotic machinery in the clearance mechanisms regu-
lating platelet survival. Interestingly, data show that newborn and adult
mice have similar platelet production rates, but neonatal platelets
survived 1 day longer in circulation.99 A study of proapoptotic and
antiapoptotic Bcl-2 family proteins shows that neonatal platelets
have higher levels of the antiapoptotic protein Bcl-2 and are more
resistant to apoptosis induced by the Bcl-2/Bcl-xL inhibitor
ABT-737 than adult platelets. However, genetic ablation or pharma-
cologic inhibition of Bcl-2 alone does not shorten neonatal platelet
survival or reduce platelet counts in newborn mice, indicating the ex-
istence of redundant or alternative mechanisms mediating the pro-
longed lifespan of neonatal platelets.99 Whether glycans (increase in
platelet surface sialic acid) play a role in the prolonged survival of
neonatal platelets remains to be established.

Immune platelet clearance

ITP is a common bleeding disorder caused primarily by platelet
autoantibodies that accelerate platelet destruction, alter platelet fun-
ction, and/or inhibit platelet production.100 These autoantibodies are
mainly directed against the two most abundant platelet GPs, ie, the
integrin aIIbb3 (GPIIb-IIIa) and/or the GPIb-IX complex (Figure 4).
The prevailingmodel posits that antibodymediated platelet destruction
occurs in the spleen,101 where the interaction between the Fc portion of
platelet-associated immunoglobulin G antibodies and Fcg receptors
(FcgRs) on macrophages initiates phagocytosis. However, data show
that, in contrast to anti–aIIbb3-mediated ITP, anti–GPIba-mediated
ITP is often refractory to therapies targeting FcgR pathways or sple-
nectomy. Recent findings show that certain anti-GPIba antibodies
trigger platelet desialylation, a process that deviates platelet clearance
from splenic macrophage Fc receptors to the hepatic AMR, showing
that FcgR-independent mechanisms of ITP exist.102,103 The mecha-
nisms of how anti–GPIba-antibody binding leads to desialylation
remain to be established. It is likely that platelets secrete active Neu1
and Neu3 upon antibody binding and/or platelet activation.57 The
notion that the AMR plays a significant role in the clearance of

Figure 4. Platelet clearance mechanisms. (1) Glycan-

lectin mediated clearance: platelets lose Sia as they age,

leading to their clearance by the C-type lectin AMR on

hepatocytes. Stored platelets additionally lose Gal leading

to exposure of GlcNAc and their clearance by the aMb2

integrin on hepatic macrophages (Kupffer cells). (2) Auto-

antibody Fc receptor and lectin-mediated clearance: plate-

let clearance is mediated by autoreactive antibodies toward

the integrin aIIbb3 and the GP GPIba as part of the

von Willebrand receptor complex (GPIb-IX). Platelets are

cleared via Fc receptors on macrophages and CD81 cyto-

toxic T lymphocytes. Specific anti-GPIba but not anti-

aIIbb3 antibodies induce platelet desialylation, thereby

diverging platelet clearance to hepatic AMRs. (3) Pro-

grammed cell death (apoptosis) mediated clearance:

platelet survival also depends on the interplay between

prosurvival and proapoptotic members of the Bcl-2

family, which are critical regulators of the intrinsic apo-

ptotic pathway. Platelet clearance via scavenger re-

ceptors is accelerated in mice lacking the prosurvival

proteins Bcl-2, Bcl-xL, and Mcl-1. It is unclear if the

apoptotic and glycan-lectin–mediated clearance con-

verge at a certain stage of platelet “death” to induce

platelet clearance. Gal, galactose; Sia, sialic acid.
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anti–GPIba-opsonized and desialylated platelets provides a potential
explanation for refractoriness to splenectomy, as well as to steroid and
intravenous immunoglobulin therapies. Recent data also show that
platelet destruction in ITP patients is mediated by CD81 cytotoxic
T lymphocytes.104

Conclusion

Platelet counts are controlled in a multifaceted, complex manner.
Recent evidence shows that the AMR recognizes senescent,
desialylated platelets under steady state conditions. Desialylated
platelets and the AMR are the physiological ligand-receptor pair
regulating hepatic TPO mRNA production, as the AMR-mediated
removal of desialylated platelets regulates TPO synthesis in the
liver by recruiting JAK2 and STAT3 to increase thrombopoiesis.
Senescent platelets are also removed from the circulation by apo-
ptotic signals. Platelets are cleared by antibody binding to platelets
via macrophage FcgRs during pathological conditions. Recent
findings suggest that anti-GPIba antibodies can induce platelet
desialylation, thereby converging signals for platelet removal
with immune-mediated platelet removal. Many questions remain
concerning the mechanisms governing platelet numbers. How do
the above processes work together to maintain platelet numbers?
Do clearance systems communicate with the BM environment to
ensure adequate thrombopoiesis? Further studies will continue to

elucidate the mechanisms regulating the 1011 platelets that are
produced and cleared daily.
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