

Nafith Abu Tarboush, DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Protein Purification & Characterization Techniques

Extracting Pure Proteins from Cells

- Purification techniques focus mainly on size & charge
- The first step is homogenization (grinding, Potter–Elvejhem homogenizer, sonication, freezing and thawing, detergents)

Differential centrifugation

Sedimentation

- A particle sediments by centrifugation
- Sedimentation depends on its mass and shape
- The sedimentation of a particle is constant and can be defined as a sedimentation coefficient
 - Sedimentation coefficient = 10^{-13} s = 1 Svedberg
- The sedimentation of a particle depends on its
 - Mass (direct correlation)
 - Density (direct correlation)
 - Shape (inverse correlation)
 - The density of the solution (inverse correlation)

Example: cell fractionation

(800 *g:* unbroken cells & nuclei; 20,000 *g:* mitochondria; 100,000 – 150,000 *g:* ribosomes and membrane fragments)

This treatment separates cell components on the basis of size. In general, the largest units experience the largest centrifugal force and move the most rapidly

Basis of protein separation

- Proteins can be purified on the basis
 - Solubility
 - Size
 - Charge
 - Specific binding affinity

Salting in & out

- Are proteins soluble? If yes, to which limit?
- Salt:
 - Stabilizes the various charged groups on a protein molecule
 - Enhances the polarity of water
 - Enhances solubility
- Ammonium sulfate (the most common)
- This technique is important but results are crude

Dialysis

- Principle of diffusion
- Concept of MW cut-off
- Pure vs. crude

Column Chromatography

- Greek chroma, "color," and graphein, "to write"
- Is it just for colourful proteins?

Chromatography is based on two phases: stationary &

mobile

What are the different kinds?

Size-exclusion chromatography Gel-filtration chromatography

- Separation on the basis of size (MW)
- Stationary (cross-linked gel particles): consist of one of two kinds of polymers; the 1st is a carb. polymer (ex. dextran or agarose); The 2nd is based on polyacrylamide
- Extent of crosslinking & pore size (exclusion limit)
- Convenient & MW estimate
- Each gel has range of sizes that separate linearly with the log of the molecular weight

Molecular-sieve chromatography

Ion-exchange chromatography

- Interaction based on net charge & is less specific
- Resin is either negatively charged (cation exchanger) or positively charged (anion exchanger)

Weakly acidic: carboxymethyl (CM) cellulose

$$-\mathrm{O}-\mathrm{CH}_2-\mathrm{C}$$

Weakly basic: diethylaminoethyl (DEAE) cellulose

Ion-exchange chromatography

- Buffer equilibration, exchange resin is bound to counter-ions. A cationexchange resin is usually bound to Na+ or K+ ions, and an anion exchanger is usually bound to Cl⁻ ions
- Proteins mixture loading
- Elution (pH change or higher salt concentration)

Proteins move through the column at rates determined by their net charge at the pH being used. With cation exchangers, proteins with a more negative net charge move faster and elute earlier.

Affinity chromatography

 It has specific binding properties

The polymer (stationary)
is covalently linked to a
ligand that binds
specifically to the desired
protein

 The bound protein can be eluted by adding high conc. of the soluble ligand

Affinity chromatography

- Protein-ligand interaction can also be disrupted with a change in pH or ionic strength
- Convenient & products are very pure (Antigenantibody, His-tag, GST-Tag)

